
nuXmv 2.0.0 User Manual

Marco Bozzano, Roberto Cavada,
Alessandro Cimatti, Michele Dorigatti,
Alberto Griggio, Alessandro Mariotti,

Andrea Micheli, Sergio Mover,
Marco Roveri, Stefano Tonetta

FBK - Via Sommarive 18, 38055 Povo (Trento) – Italy

Email: nuxmv@list.fbk.eu

nuxmv@list.fbk.eu

This document is part of the distribution package of the NUXMV model checker.
For any additional request for information please send an e-mail to:

* nuxmv-users@list.fbk.eu for technical questions about the usage of the tool
* nuxmv@list.fbk.eu for non-technical issues like licensing, cooperation requests, etc..

Please report bugs through the nuXmv Bug Tracker at https://nuxmv.fbk.eu/bugs, and then
click “Login Anonymously” to access. As an alternative (less preferred), you can send an email to
nuxmv-users@list.fbk.eu.

Copyright ©2019 by FBK.

nuxmv-users@list.fbk.eu
nuxmv@list.fbk.eu
https://nuxmv.fbk.eu/bugs
nuxmv-users@list.fbk.eu

nuXmv 2.0.0 User Manual

Contents

1 Introduction 4
1.1 Analysis of finite-state domains . 4
1.2 Analysis of infinite-state domains . 4
1.3 Miscellaneous functionalities . 5
1.4 Differences with NUSMV . 6

2 Input Language of NUXMV 7
2.1 Types Overview . 8

2.1.1 Boolean . 8
2.1.2 Enumeration Types . 8
2.1.3 Word . 8
2.1.4 Integer . 9
2.1.5 Real . 9
2.1.6 Clock . 9
2.1.7 Array . 9
2.1.8 WordArray . 9
2.1.9 IntArray . 10
2.1.10 Set Types . 10
2.1.11 Type Order . 10

2.2 Expressions . 10
2.2.1 Implicit Type Conversion . 11
2.2.2 Constant Expressions . 11
2.2.3 Basic Expressions . 13
2.2.4 Simple and Next Expressions . 23
2.2.5 Type conversion operators . 24

2.3 Definition of the FSM . 25
2.3.1 Variable Declarations . 25
2.3.2 DEFINE Declarations . 29
2.3.3 Array Define Declarations . 29
2.3.4 CONSTANTS Declarations . 29
2.3.5 Function Declaration . 30
2.3.6 INIT Constraint . 30
2.3.7 INVAR Constraint . 30
2.3.8 TRANS Constraint . 31
2.3.9 ASSIGN Constraint . 31
2.3.10 FAIRNESS Constraints . 33
2.3.11 MODULE Declarations . 33
2.3.12 MODULE Instantiations . 34
2.3.13 References to Module Components (Variables and Defines) 35
2.3.14 A Program and the main Module . 36
2.3.15 Namespaces and Constraints on Declarations . 36
2.3.16 Context . 37
2.3.17 ISA Declarations . 37

Copyright ©2019 by FBK. 1

nuXmv 2.0.0 User Manual

2.3.18 PRED and MIRROR Declarations . 37
2.4 Definition of the Timed Transition System . 38

2.4.1 TIME DOMAIN Annotation . 38
2.4.2 Variable Declarations . 38
2.4.3 INVAR Constraint . 39
2.4.4 URGENT Constraint . 39
2.4.5 TRANS Constraint . 39
2.4.6 ASSIGN Constraint . 39
2.4.7 MODULE Declarations . 39

2.5 Specifications . 39
2.5.1 CTL Specifications . 39
2.5.2 Invariant Specifications . 40
2.5.3 LTL Specifications . 41
2.5.4 Real Time CTL Specifications and Computations . 44
2.5.5 Parameter Synthesis Specifications . 45
2.5.6 PSL Specifications . 46

2.6 Variable Order Input . 49
2.6.1 Input File Syntax . 50
2.6.2 Scalar Variables . 50
2.6.3 Array Variables . 51

2.7 Clusters Ordering . 51

3 Running NUXMV interactively 52

4 Commands from NUSMV 56
4.1 Model Reading and Building . 56
4.2 Commands for Checking Specifications . 65
4.3 Commands for Bounded Model Checking . 75
4.4 Commands for checking PSL specifications . 90
4.5 Simulation Commands . 94
4.6 Execution Commands . 96
4.7 Traces . 97

4.7.1 Inspecting Traces . 98
4.7.2 Displaying Traces . 98
4.7.3 Trace Plugin Commands . 99

4.8 Trace Plugins . 101
4.8.1 Basic Trace Explainer . 101
4.8.2 States/Variables Table . 102
4.8.3 XML Format Printer . 102
4.8.4 XML Format Reader . 103
4.8.5 Empty Trace . 103

4.9 Interface to the DD Package . 103
4.10 Administration Commands . 107
4.11 Other Environment Variables . 114

5 Commands of NUXMV 116
5.1 Commands for Initialization . 116
5.2 Commands for Model Simulation . 116
5.3 Commands for Invariant Checking . 118

5.3.1 Incremental Cone Of Influence for Invariant Checking 122
5.4 Commands for LTL Model Checking . 124

5.4.1 Incremental Cone Of Influence for LTL Model Checking 127
5.4.2 Compositional Reasoning for LTL Model Checking . 129

5.5 Commands for Requirements Analysis . 130
5.6 Commands for Computing Reachable States . 131

Copyright ©2019 by FBK. 2

nuXmv 2.0.0 User Manual

5.7 Commands for Reasoning via Abstraction . 132
5.7.1 Explicit Predicate Abstraction . 132
5.7.2 Implicit Predicate Abstraction . 135

5.8 Commands for Format Conversions . 136
5.8.1 Commands for aiger 1.9.4 format support . 136
5.8.2 Commands for VMT format support . 137

5.9 Commands for Model Transformation . 139
5.9.1 Commands for Model Simplification . 139
5.9.2 Commands for Model Exploration . 142

5.10 Other Commands . 142
5.11 NUXMV environment variables . 144
5.12 Commands for Parameter Synthesis . 148

6 Commands of timed NUXMV 150
6.1 Commands for Initialization . 150
6.2 Commands for Invariant Checking . 150
6.3 Commands for LTL Model Checking . 151
6.4 Command for dumping discrete model . 151
6.5 Timed Simulation Commands . 152
6.6 Timed Execution Commands . 153
6.7 Time aware traces . 154

6.7.1 Basic Trace Explainer . 155
6.7.2 States/Variables Table . 155
6.7.3 XML Format Printer . 155
6.7.4 XML Format Reader . 155

7 Running NUXMV batch 156

Bibliography 161

A Typing and Production Rules 165

B Typing Rules 166
B.1 Types . 166
B.2 Implicit Conversion . 166
B.3 Type Rules . 167

Command Index 182

Variable Index 184

Index 186

Copyright ©2019 by FBK. 3

nuXmv 2.0.0 User Manual

Chapter 1

Introduction

NUXMV inherits, and thus provides to the user, all the functionalities of NUSMV [CCG+02]. In this section
we revise all the new features distinguishing them in those for the analysis of finite-state domains, those for the
analysis of infinite-state domains, and other generic features.

1.1 Analysis of finite-state domains
NUXMV complements the NUSMV language with the aiger 1.9.4 [BHW11] format. aiger 1.9.4 is the language
adopted in the hardware model checking competition. Once the aiger 1.9.4 file is read, the internal data structures
of NUXMV are populated, and it is possible to verify the properties (if any) with any of the available verification
algorithms, or specify new properties interactively “playing” with the design.

NUXMV implements a vast portfolio of algorithms for invariant checking. We extended MiniSat [ES03] to
build a resolution proof. This enables for the extraction of interpolants [McM04], and opens for the imple-
mentation of interpolation based algorithms. We currently provide an implementation for the McMilllan ap-
proach [McM03] and for the interpolation sequence approach [VG09]. Interpolation based algorithms are com-
plemented with k-induction algorithms [SSS00] and a family of algorithms based on IC3 [Bra11, HBS13, VGS12].
The IC3 algorithm using abstraction refinement [VGS12] comes in two variant depending on the approach to re-
finement: the original one based on IC3, and a new variant based on BMC. All these techniques, benefit from
the use of temporal decomposition [CMBK09] and from the techniques to discover equivalences to simplify the
problem.

Still related to the verification of invariants, we also improve the BDD based invariant checking algorithms
by allowing the user to specify hints in the spirit of guided reachability [TCP08]. The hints are specified using a
restricted fragment of the PSL SERE [EF06]. The hints can also be used to compute the full set of the reachable
states.

For LTL SAT based model checking, we complement the BMC based algorithms of NUSMV [BCCZ99b,
BHJ+06] with k-liveness [CS12] integrated within an IC3 framework. K-liveness is based on counting and bound-
ing the number of times a fairness constraint can become true. This is used in conjunction with the construction
of a monitor for LTL properties, for which we use the LTL2SMV [CGH97b] as provided by NUSMV.

1.2 Analysis of infinite-state domains
In order to allow the user to specify infinite-state systems, we extend the language of NUSMV with two new data
types, namely Reals and unbounded Integers. This, for instance, enables to specify domains with infinite data
types (e.g. the example in Fig. 1.1).

To analyze such kind of designs, we integrate in NUXMV several new verification algorithms based on Satisfi-
ability Modulo Theory (SMT) [BSST09] and on abstraction, or combination of abstraction with other techniques.

We lift Simple Bounded Model Checking (SBMC) [BHJ+06] from the pure Boolean case to the SMT case.
The encoding is the same as that of SBMC, but instead of using a SAT solver we use an SMT solver. The
SBMC SMT based approach for LTL verification is complemented with k-liveness combined with IC3 extended

Copyright ©2019 by FBK. 4

nuXmv 2.0.0 User Manual

1 MODULE main
2 IVAR
3 d : Real ;
4 VAR
5 s ta te : {s0 , s1};
6 res : Real ;
7 ASSIGN
8 i n i t (s t a t e) := s0 ;
9 next (s t a t e) := case
10 s ta te = s0 & res >= 0.10 : s1 ;
11 s ta te = s1 & res >= 0.20 : s0 ;
12 TRUE : s t a t e ;
13 esac ;
14 next (t) := case
15 s ta te = s0 & res < 0.10 : res + d ;
16 s ta te = s1 & res < 0.20 : res + d ;
17 TRUE : 0 . 0 ;
18 esac ;
19 INIT
20 res >= 0.0
21 TRANS
22 (s t a t e = s0−> (d >= 0 & d <= 0 . 0 1)) &
23 (s t a t e = s1−> (d >= 0 & d <= 0 . 0 2))
24 INVARSPEC res <= 0 . 3 ;

Figure 1.1: Example of the NUXMV language.

to the infinite-state case [CGMT14b]. This approach relies on recent results on applying an IC3-based approach
to the verification of infinite-state systems [CG12]. We remark that, although these approaches are in general
incomplete, if a lazo-shaped counterexample exists, it is guaranteed to be eventually found. Moreover, for certain
designs, these approaches are able to conclude that the property hold.

As far as invariant checking is concerned, we lift the pure Boolean approaches like BMC, k-induction, inter-
polation, and IC3, to the case of verification of infinite-state systems. Intuitively, we use an SMT solver in place
of a SAT solver. For the infinite case, similar to the finite case, we provide an SMT based implementation for
McMilllan approach [McM03]; for the interpolation sequence approach [VG09]; for k-induction [SSS00]; and for
a family of algorithms based on IC3 [CG12, CGMT14a].

NUXMV also implements several approaches based on abstraction refinement [CGJ+03]. We provide new
algorithms combining abstraction with BMC and k-induction [Ton09]. The algorithms do not rely on quantifier
elimination techniques to compute the abstraction, but encode the model checking problem over the abstract state
space into an SMT problem. The advantage, is that they avoid the possible bottleneck of abstraction computation.
The very same approach has been recently lifted and tightly integrated within the IC3 framework [CGMT14a],
with very good results. All these techniques complement the “classical” counterexample guided (predicate) ab-
straction refinement (CEGAR) [CGJ+03], also implemented in NUXMV. The CEGAR approach requires the
computation of a quantifier-free formula that is equivalent to the abstract transition relation w.r.t. a given set of
predicates. This, in turn, requires the solving of an ALLSAT problem [LNO06]. For this step, NUXMV imple-
ments different techniques: the combination of BDD and SMT [CCF+07, CFG+10], where BDDs are used as
compact Boolean model enumerator within an ALLSMT approach; a technique that exploits the structure of the
system under verification, by partitioning the abstraction problem into the combination of several smaller abstrac-
tion problems [CDJR09]. For the refinement step to discard the spurious counterexample, NUXMV implements
three approaches based on the analysis of the unsatisfiable core, on the analysis of the interpolants, and on the
weakest preconditions.

1.3 Miscellaneous functionalities
NUXMV provides novel functionalities that aim at facilitating the modeling and the understanding of complex
designs. For instance, it allows for the generation of an explicit state representation (subject to the projection over
a set of user specified predicates) in XMI format of the design under verification. The generated XMI can be
visualized in any UML based viewer supporting the import from XMI.

LTL and invariant properties have been extended to allow for the use of input signals and next values of
state variables. These extensions do not add any expressive power to the language, but facilitates the writing of
properties from the user’s point of view. Internally, each state formula containing a reference to an input or next
signal is replaced by a corresponding monitor allowing the reuse of off-the-shelf verification engines.

NUXMV also provides several model transformation techniques aiming to reduce the state space of the design.
It uses static analysis techniques to extract possible values for variables, and then re-encode the design using such

Copyright ©2019 by FBK. 5

nuXmv 2.0.0 User Manual

information (e.g. using a bit-vector at 32 bit to store 2 values can be re-encoded with just one Boolean variable).
These techniques are complemented with others aiming at simplifying the model through constants and free inputs
propagation [AFF+07].

Finally, in NUXMV we remove the NUSMV limitation to have bit vectors with less than 64 bits only.

1.4 Differences with NUSMV
In this section we summarize the main differences at user level with NUSMV.

As far as the input language of NUXMV is concerned, we introduce two new types for state and input variables.
Namely, real and integer (See sections 2.1.5, 2.1.4, and 2.3.1 for details). This enables the user to model the
specification of infinite-state transition systems. We add new constructs for specifying the predicates to use in
the predicate abstraction based techniques (See sections 2.3.18 and 5.7 for details). NUXMV does not support
anymore the keyword process. Indeed, the NUXMV is targeting only finite- and infinite-state synchronous fair
transition systems.

We provide the user with all the interactive commands provided by NUSMV (See chapter 4), and we comple-
ment them with a set of new commands to use the new features provided by NUXMV (See chapter 5 for a detailed
list of the new functionalities provided). In particular, the new commands allows to use the new model checking
algorithms for finite-state transition systems, and the new algorithms based on SMT for infinite-state transition
systems.

Structure of this document
This document is structured as follows. First in chapter 2 we describe the syntax and the semantics of the input
language of the NUXMV. In chapter 3 we describe how to execute the NUXMV in interactive mode. In chapter 4 we
describe the interactive commands inherited from NUSMV, while in chapter 5 we describe the new commands
of NUXMV. In chapter 7 we describe the command line switches to execute NUXMV in batch mode (only for
finite-state domains).

Remark
This document is in continuous evolution to better document the features provided by NUXMV.

Copyright ©2019 by FBK. 6

nuXmv 2.0.0 User Manual

Chapter 2

Input Language of NUXMV

In this chapter we present the syntax and semantics of the input language of NUXMV.
Before going into the details of the language, let us give a few general notes about the syntax. In the syntax

notations used below, syntactic categories (non-terminals) are indicated by monospace font, and tokens and
character set members (terminals) by bold font. Grammar productions enclosed in square brackets (‘[]’) are
optional while a vertical bar (‘|’) is used to separate alternatives in the syntax rules. Sometimes one of is used
at the beginning of a rule as a shorthand for choosing among several alternatives. If the characters |, [and] are
in bold font, they lose their special meaning and become regular tokens.

In the following, an identifier may be any sequence of characters starting with a character in the set
{A-Za-z } and followed by a possibly empty sequence of characters belonging to the set {A-Za-z0-9 $#-}. All
characters and case in an identifier are significant. Whitespace characters are space (<SPACE>), tab (<TAB>) and
newline (<RET>). Any string starting with two dashes (‘--’) and ending with a newline is a comment and ignored
by the parser. The multiline comment starts with ‘/--’ and ends with ‘--/’.

The syntax rule for an identifier is:

identifier ::
identifier_first_character

| identifier identifier_consecutive_character

identifier_first_character :: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z _

identifier_consecutive_character ::
identifier_first_character

| digit
| one of $ # -

digit :: one of 0 1 2 3 4 5 6 7 8 9

An identifier is always distinct from the NUXMV language reserved keywords which are:

@F~, @O~, A, ABF, ABG, abs, AF, AG, array, ASSIGN, at next, at last, AX, bool,
boolean, BU, case, Clock, clock, COMPASSION, COMPID, COMPUTE, COMPWFF, CONSTANTS,
CONSTARRAY,CONSTRAINT, cos, count, CTLSPEC, CTLWFF, DEFINE, E, EBF, EBG, EF, EG, esac,
EX, exp, extend, F, FAIRNESS, FALSE, floor, FROZENVAR, FUN, G, H, IN, in, INIT, init,
Integer, integer, INVAR, INVARSPEC, ISA, ITYPE, IVAR, JUSTICE, ln, LTLSPEC, LTLWFF,
MAX, max, MDEFINE, MIN, min, MIRROR, mod, MODULE, NAME, next, NEXTWFF, noncontinuous,
O, of, PRED, PREDICATES, pi, pow, PSLSPEC, PARSYNTH, READ, Real, real, resize, S, SAT,
self, signed, SIMPWFF, sin, sizeof, SPEC, swconst, T, tan, time, time since, time until,
toint, TRANS, TRUE, typeof, U, union, unsigned, URGENT, uwconst, V, VALID, VAR, Word,
word, word1, WRITE, X, xnor, xor, X~ Y, Y~, Z

Copyright ©2019 by FBK. 7

nuXmv 2.0.0 User Manual

Note: NUXMV does no longer support the keyword process as only synchronous systems are supported.
Note: Clock, clock and time are reserved keywords only in TTS (2.4).
To represent various values we will use integer numbers which are any non-empty sequence of decimal

digits preceded by an optional unary minus

integer_number ::
- digit

| digit
| integer_number digit

and symbolic constants which are identifiers

symbolic_constant :: identifier

Examples of integer numbers and symbolic constants are 3, -14, 007, OK, FAIL, waiting,

stop. The values of symbolic constants and integer numbers do not intersect.

2.1 Types Overview
This section provides an overview of the types that are recognised by NUXMV.

2.1.1 Boolean
The boolean type comprises symbolic values FALSE and TRUE.

2.1.2 Enumeration Types
An enumeration type is a type specified by full enumerations of all the values that the type comprises. For
example, the enumeration of values may be {stopped, running, waiting, finished}, {2, 4, -2, 0},
{FAIL, 1, 3, 7, OK}, etc. All elements of an enumeration have to be unique although the order of elements
is not important.

However, in the NUXMV type system, expressions cannot be of actual enumeration types, but of their sim-
plified and generalised versions only. Such generalised enumeration types do not contain information about
the exact values constituting the types, but only the flag whether all values are integer numbers, symbolic
constants or both. Below only generalised versions of enumeration types are explained.

The symbolic enum type covers enumerations containing only symbolic constants. For example, the
enumerations {stopped, running, waiting} and {FAIL, OK} belong to the symbolic enum type.

There is also a integers-and-symbolic enum type. This type comprises enumerations which contain both
integer numbers and symbolic constants, for example, {-1, 1, waiting}, {0, 1, OK}, {running,
stopped, waiting, 0}.

Another enumeration type is integer enum. Example of enumerations of integers are {2, 4, -2, 0} and
{-1, 1}. In the NUXMV type system an expression of the type integer enum is always converted to the type
integer. For explaining the type of expression we will always use the type integer instead of integer enum.

Enumerations cannot contain any boolean value (i.e.{FALSE, TRUE}). boolean type must be declared as
boolean.

To summarise, we actually deal only with two enumeration types: symbolic enum and integers-and-
symbolic enum. These types are distinguishable and have different operations allowed on them.

2.1.3 Word
The unsigned word[•] and signed word[•] types are used to model vector of bits (booleans) which allow bitwise
logical and arithmetic operations (unsigned and signed, respectively). These types are distinguishable by their
width. For example, type unsigned word[3] represents vector of three bits, which allows unsigned operations,
and type signed word[7] represents vector of seven bits, which allows signed operations.

Copyright ©2019 by FBK. 8

nuXmv 2.0.0 User Manual

When values of unsigned word[N] are interpreted as integer numbers the bit representation used is the most
popular one, i.e. each bit represents a successive power of 2 between 0 (bit number 0) and 2N−1 (bit number
N − 1). Thus unsigned word[N] is able to represent values from 0 to 2N − 1.

The bit representation of signed word[N] type is “two’s complement”, i.e. it is the same as for unsigned
word[N] except that the highest bit (number N − 1) has value −2N−1. Thus the possible value for signed
word[N] are from −2N−1 to 2N−1 − 1.

2.1.4 Integer
The domain of the integer type is any Whole Number, positive or negative.

Although the integer type is used to represent integer enum type when explaining the NUXMV type system,
there are important differences which are needed to keep in mind. First, using integer is not allowed in certain
Model Checking engines and algorithms. Second, at the moment, there are implementation-dependent constraints
on the integer enum type, as integer numbers can only be in the range −232 +1 to 232− 1 (more accurately,
these values are equivalent to the C/C++ macros INT MIN +1 and INT MAX).

2.1.5 Real
The domain of the real type is the Rational Numbers.

2.1.6 Clock
The clock type is available only in TTS (2.4). The domain of this type depends on the time domain of the module:

• continuous time domain: clock type domain is equivalent to the real type domain;

• none time domain: clock type can not be expressed.

2.1.7 Array
Arrays are declared with a lower and upper bound for the index, and the type of the elements in the array. For
example,

array 0..3 of boolean
array 10..20 of {OK, y, z}
array 1..8 of array -1..2 of unsigned word[5]

The type array 1..8 of array -1..2 of unsigned word[5] means an array of 8 elements (from 1 to 8),
each of which is an array of 4 elements (from -1 to 2) that are 5-bit-long unsigned words.

Array subtype is the immediate subtype of an array type. For example, subtype of array 1..8 of ar-
ray -1..2 of unsigned word[5] is array -1..2 of unsigned word[5] which has its own subtype unsigned
word[5].

array types are incompatible with set type, i.e. array elements cannot be of set type.
Expression of array type can be constructed with array DEFINE (see 2.3.3) or variables of array type (see

2.3.1).
Internally, these arrays are treated as a set of variables. See next subsections for other kinds of arrays.

2.1.8 WordArray
The word-array types are used to model arrays whose size is bounded and is specified with unsigned word[•]
type. Elements of the array can be of some type. For example,

array word[5] of unsigned word[3];

array word[4] of real;

The type array word[4] of word[9] means an array of 16 elements (from 0d4 0 to 0b4 15), each of
which is unsigned word[9]. word-array types are distinguishable on their size and element type. Note also that
the size has to be greater than zero.

Copyright ©2019 by FBK. 9

nuXmv 2.0.0 User Manual

word-array are very specific type and very few operators can be applied to expressions of these types. See
also READ, WRITE, CONSTARRAY, := , and = operators.

2.1.9 IntArray
The int-array types are used to model arrays whose size is unbounded. Similar to word-array, the elements of the
int-array can be of any type. For example,

array integer of integer;

array integer of unsigned word[8];

The type array integer of integer means an unbounded array with integer type indices and integer
type elements. int-array types are distinguishable on their element type.

int-array are very specific type and very few operators can be applied to expressions of these types. See also
READ, WRITE, CONSTARRAY, := , and = operators.

2.1.10 Set Types
set types are used to identify expressions representing a set of values. There are four set types: boolean set,
integer set, symbolic set, integers-and-symbolic set. The set types can be used in a very limited number of
ways. In particular, a variable cannot be of a set type. Only range constant and union operator can be used to
create an expression of a set type, and only in, case, (• ? • : •), and assignment1 expressions can have imediate
operands of a set type.

Every set type has a counterpart among other types. In particular,

the counterpart of a boolean set type is boolean,

the counterpart of a integer set type is integer,

the counterpart of a symbolic set type is symbolic enum,

the counterpart of a integers-and-symbolic set type is integers-and-symbolic enum.

Some types such as unsigned word[•], signed word[•], and real do not have a set type counterpart.

2.1.11 Type Order
Figure 2.1 depicts the order existing between types in NUXMV.
It means, for example, that integer is less than integers-and-symbolic enum and less than real; symbolic
enum is less than integers-and-symbolic enum, etc. The unsigned word[•] and signed word[•] types are not
comparable with any other type or between each other. Any type is equal to itself.

Note that enumerations containing only integer numbers have the type integer.
For 2 arrays types array N1..M1 of subtype1 and array N2..M2 of subtype2 the first type is less

then the second one if and only if N1=N2, M1=M2 and type subtype1 is less than subtype2.

2.2 Expressions
In NUXMV all expressions are typed and there are constraints on the type of operands. An expression that violates
the type system will be considered erroneous, and will raise a type error.

To maintain backward compatibility with old versions of NUSMV, there is a system variable called
backward compatibility (and a correponding -old command line option) that disables a few new features
of NUSMV to keep backward compatibility with old version of NUSMV. In particular, if this system variable is
set then type violations caused by expressions of old types (i.e. enumeration type, boolean and integer) will be
ignored by the type checker, instead, warnings will be printed out. See the NUSMV user manual [CCCJ+10] for
further information.

If additionally, the system variable type checking warning on is unset, then even these warnings will not
be printed out.

1For more information on these operators see the NUSMV user manual [CCCJ+10].

Copyright ©2019 by FBK. 10

nuXmv 2.0.0 User Manual

boolean
integer→ real symbolic enum
↓ ↓

integers-and-symbolic enum

unsigned word[1]

unsigned word[2]

unsigned word[3]
. . .

boolean set
integer set symbolic set

↓ ↓
integers-and-symbolic set

signed word[1]

signed word[2]

signed word[3]
. . .

array N1..M1 of subtype1
↓

array N2..M2 of subtype2 if and only if

N1=N2 subtype1
M1=M2, and ↓

subtype2

Figure 2.1: The ordering on the types in NUXMV

2.2.1 Implicit Type Conversion
In some expressions operands may be converted from one type to its set type counterpart (see 2.1.10). For
example, integer can be converted to integer set type.

clock is implicitly converted to real.
Note: In old version of NUSMV, implicit type conversion from integer to boolean (and vice-versa) was

performed. Since NUSMV version 2.5.1, and thus also in NUXMV, implicit integer <-> boolean type conversion
is no longer supported, and explicit cast operators have to be used.

2.2.2 Constant Expressions
A constant can be a boolean, integer, real, symbolic, word or range constant.

constant ::
boolean_constant

| symbolic_constant
| integer_constant
| real_constant
| word_constant
| range_constant

Boolean Constant

A boolean constant is one of the symbolic values FALSE and TRUE. The type of a boolean constant is
boolean.

boolean_constant :: one of
FALSE TRUE

Symbolic Constant

A symbolic constant is syntactically an identifier and indicates a unique value.

symbolic_constant :: identifier

The type of a symbolic constant is symbolic enum. See Section 2.3.15 [Namespaces], page 36 for more in-
formation about how symbolic constants are distinguished from other identifiers, i.e. variables, defines,
etc.

Copyright ©2019 by FBK. 11

nuXmv 2.0.0 User Manual

Integer Constant

An integer constant is an integer number. The type of an integer constant is integer.

integer_constant :: integer_number

Real Constant

A real constant is an real number. The type of a real constant is real.

real_constant :: real_number

Definition of real number allows for different representations, namely floating point, fractional and expo-
nential. Some examples:

float 123.456

fractional F’123/456

fractional f’123/456

exponential 123e4

exponential 123.456e7

exponential 123.456E7

exponential 123.456E-7

Word Constant

Word constant begins with digit 0, followed by optional character u (unsigned) or s (signed) and one of the
characters b/B (binary), o/O (octal), d/D (decimal) or h/H (hexadecimal) which gives the base that the actual con-
stant is in. Next comes an optional decimal integer giving the number of bits, then the character , and lastly the
constant value itself. Assuming N is the width of the constant the type of a word constant is signed word[N]
if character s is provided, and unsigned word[N] otherwise. For example:

0sb5 10111 has type signed word[5]
0uo6 37 has type unsigned word[6]
0d11 9 has type unsigned word[11]
0sh12 a9 has type signed word[12]

The number of bits can be skipped, in which case the width is automatically calculated from the number of digits
in the constant and its base. It may be necessary to explicitly give leading zeroes to make the type correct — the
following are all equivalent declarations of the integer constant 11 as a word of type unsigned word[8]:

0ud8 11

0ub8 1011

0b 00001011

0h 0b

0h8 b

The syntactic rule of the word constant is the following:

word_constant ::
0 [word_sign_specifier] word_base [word_width] _ word_value

word_sign_specifier :: one of
u s

word_width ::
integer_number -- a number greater than zero

word_base ::
b | B | o | O | d | D | h | H

Copyright ©2019 by FBK. 12

nuXmv 2.0.0 User Manual

word_value ::
hex_digit

| word_value hex_digit
| word_value

hex_digit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Note that

• The width of a word must be a number strictly greater than 0.

• Decimal word constants must be declared with the width specifier, since the number of bits needed for
an expression like 0d 019 is unclear.

• Digits are restricted depending on the base the constant is given in.

• Digits can be separated by the underscore character (” ”) to aid clarity, for example 0b 0101 1111 1100

which is equivalent to 0b 010111111100.

• For a given width N the value of a constant has to be in range 0 . . . 2N − 1. For decimal signed words (both
s and d are provided) the value of a constant has to be in range 0 . . . 2N−1.

• The number of bits in word constant has no longer the implementation limit of being 64 bits at most. In
NUXMV it is possible to define words of arbirtary size.

Range Constant

A range constant specifies a set of consecutive integer numbers. For example, a constant -1..5 indicates the
set of numbers -1, 0, 1, 2, 3, 4 and 5. Other examples of range constant can be 1..10, -10..-10,
1..300. The syntactic rule of the range constant is the following:

range_constant ::
integer_number .. integer_number

with an additional constraint that the first integer number must be less than or equal to the second integer number.
The type of a range constant is integer set.

2.2.3 Basic Expressions
A basic expression is the most common kind of expression used in NUXMV (as it is also the case in NUSMV).

basic_expr ::
constant -- a constant

| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| function_call -- a call to a function
| (basic_expr)
| pi -- the pi constant
| abs (basic expr) -- absolute value
| max (basic expr , basic expr) -- max
| min (basic expr , basic expr) -- min
| sin (basic expr) -- sin
| cos (basic expr) -- cos
| exp (basic expr) -- exp
| tan (basic expr) -- tan
| ln (basic expr) -- ln
| ! basic_expr -- logical or bitwise NOT
| basic_expr & basic_expr -- logical or bitwise AND

Copyright ©2019 by FBK. 13

nuXmv 2.0.0 User Manual

| basic_expr | basic_expr -- logical or bitwise OR
| basic_expr xor basic_expr -- logical or bitwise exclusive OR
| basic_expr xnor basic_expr -- logical or bitwise NOT exclusive OR
| basic_expr -> basic_expr -- logical or bitwise implication
| basic_expr <-> basic_expr -- logical or bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr != basic_expr -- inequality
| basic_expr < basic_expr -- less than
| basic_expr > basic_expr -- greater than
| basic_expr <= basic_expr -- less than or equal
| basic_expr >= basic_expr -- greater than or equal
| - basic_expr -- integer or real or word unary minus
| basic_expr + basic_expr -- integer or real or word addition
| basic_expr - basic_expr -- integer or real or word subtraction
| basic_expr * basic_expr -- integer or real or word multiplication
| basic_expr / basic_expr -- integer or real or word division
| basic_expr mod basic_expr -- integer or word remainder
| basic_expr >> basic_expr -- bit shift right
| basic_expr << basic_expr -- bit shift left
| basic_expr [index] -- index subscript
| basic_expr [basic_expr : basic_expr]

-- word bits selection
| basic_expr :: basic_expr -- word concatenation
| word1 (basic_expr) -- boolean to unsigned word[1] conversion
| bool (basic_expr) -- unsigned word[1] and int to boolean conversion
| toint (basic_expr) -- word and boolean to integer constant conversion
| count (basic_expr_list) -- count of true boolean expressions
| swconst (basic_expr , basic_expr)

-- integer to signed word constant conversion
| uwconst (basic_expr, basic_expr)

-- integer to unsigned word constant conversion
| signed (basic_expr) -- unsigned word to signed word conversion
| unsigned (basic_expr) -- signed word to unsigned word conversion
| sizeof (basic_expr) -- word size as an integer
| floor (basic_expr) -- from a real to an integer
| extend (basic_expr , basic_expr)

-- word width extension
| resize (basic_expr , basic_expr)

-- word width resize
| signed word[N] (basic_expr) -- integer to signed word conversion
| unsigned word[N] (basic_expr) -- integer to unsigned word conversion
| basic_expr union basic_expr -- union of set expressions
| { set_body_expr } -- set expression
| basic_expr in basic_expr -- inclusion in a set expression
| basic_expr ? basic_expr : basic_expr

-- if-then-else expression

| READ (basic_expr , basic_expr) -- read function with first argument
-- an array and second index
| WRITE (basic_expr, basic_expr, basic_expr) -- write function with first
-- argument an array, second index, and third value to be stored
| CONSTARRAY (typeof (variable_identifer), basic_expr) -- constant array
-- constructor function that takes the type of the array variable indentifier
| CONSTARRAY (array word[n] of subtype, basic_expr) -- constant array
-- constructor function for word-array that takes the array type explicitly
| CONSTARRAY (array integer of subtype, basic_expr) -- constant array
-- constructor function for int-array that takes the array type explicitly

| case_expr -- case expression

Copyright ©2019 by FBK. 14

nuXmv 2.0.0 User Manual

| basic_next_expr -- next expression

basic_expr_list ::
basic_expr

| basic_expr_list , basic_expr

The order of parsing precedence for operators from high to low is:

[] , [:]
!
::
- (unary minus)

* / mod
+ -
<< >>
union
in
= != < > <= >=
&
| xor xnor
(• ? • : •)
<->
->

Operators of equal precedence associate to the left, except -> that associates to the right. The constants and their
types are explained in Section 2.2.2 [Constant Expressions], page 11.

Variables and Defines

A variable identifier and define identifier are expressions which identify a variable or a define, re-
spectively. Their syntax rules are:

define_identifier :: complex_identifier

variable_identifier :: complex_identifier

The syntax and semantics of complex identifiers are explained in Section 2.3.13 [References to Module
Components], page 35. All defines and variables referenced in expressions should be declared. All identifiers
(variables, defines, symbolic constants, etc) can be used prior to their definition, i.e. there is no constraint on
order such as in C where a declaration of a variable should always be placed in text above the variable use. See
more information about define and variable declarations in Section 2.3.2 [DEFINE Declarations], page 29 and
Section 2.3.1 [Variable Declarations], page 25.

A define is a kind of macro. Every time a define is met in expressions, it is substituted by the expression
associated with this define. Therefore, the type of a define is the type of the associated expression in the current
context.

variable identifier represents state, input, and frozen variables. The type of a variable is specified in
its declaration. For more information about variables, see Section 2.3 [Definition of the FSM], page 25, Sec-
tion 2.3.1 [State Variables], page 26, Section 2.3.1 [Input Variables], page 26, and Section 2.3.1 [Frozen Vari-
ables], page 27. Since a symbolic constant is syntactically indistinguishable from variable identifiers

and define identifiers, a symbol table is used to distinguish them from each other.

Function calls

A function call is a term which identify an uninterpreted function call. The syntax for function calls is:

function call :: function identifier (fun args list)
function identifier :: complex identifier

fun args list :: next expr | fun args list next expr

Copyright ©2019 by FBK. 15

nuXmv 2.0.0 User Manual

complex identifiers are explained in Section 2.3.13 [References to Module Components], page 35. The
syntax for next expr is explained in Section 2.2.4 [Simple and Next Expressions], page 23.

The type of a function is specified in its declaration. For more information about functions, see Section 2.3.5
[Function Declaration], page 30.

Parentheses

Parentheses may be used to group expressions. The type of the whole expression is the same as the type of the
expression in the parentheses.

Logical and Bitwise !

The signature of the logical and bitwise NOT operator ! is:

! : boolean→ boolean
: unsigned word[N]→ unsigned word[N]
: signed word[N]→ signed word[N]

This means that the operation can be applied to boolean, unsigned word[•] and signed word[•] operands. The
type of the whole expression is the same as the type of the operand. If the operand is not boolean, unsigned
word[•] or signed word[•] then the expression violates the type system and NUXMV will throw an error.

Logical and Bitwise &, |, xor, xnor, ->, <->

Logical and bitwise binary operators & (AND), | (OR), xor (exclusive OR), xnor (negated exclusive OR), ->
(implies) and <-> (if and only if) are similar to the unary operator !, except that they take two operands. Their
signature is:

&, |, xor, xnor, ->, <-> : boolean * boolean→ boolean
: unsigned word[N] * unsigned word[N]→ unsigned word[N]
: signed word[N] * signed word[N]→ signed word[N]

the operands can be of boolean, unsigned word[•] or signed word[•] type, and the type of the whole expression
is the type of the operands. Note that both word operands should have the same width.

Equality (=) and Inequality (!=)

The operators = (equality) and != (inequality) have the following signature:

=, != : boolean * boolean→ boolean
: integer * integer→ boolean
: integer * real→ boolean
: real * integer→ boolean
: clock * clock→ boolean
: clock * integer→ boolean
: integer * clock→ boolean
: clock * real→ boolean
: real * clock→ boolean
: symbolic enum * symbolic enum→ boolean
: integers-and-symbolic enum * integers-and-symbolic enum→ boolean
: unsigned word[N] * unsigned word[N]→ boolean
: signed word[N] * signed word[N]→ boolean
: array word[N] of subtype * array word[N] of subtype→ boolean
: array integer of subtype * array integer of subtype→ boolean

No implicit type conversion is performed. For example, in the expression
TRUE = 5

the left operand is of type boolean and the right one is of type integer. Though the signature of the operation

Copyright ©2019 by FBK. 16

nuXmv 2.0.0 User Manual

does not have a boolean * integer rule, the expression is not correct, because no implicit type conversion will be
performed. One can use the toint or the bool for explicit casts.
For example:

toint(TRUE) = 5

or
TRUE = bool(5)

This is also true if one of the operands is of type unsigned word[1] and the other one is of the type boolean.
Explicit cast must be used (e.g. using word1 or bool)

Relational Operators >, <, >=, <=

The relational operators > (greater than), < (less than), >= (greater than or equal to) and <= (less than or equal to)
have the following signature:

>, <, >=, <= : integer * integer→ boolean
: integer * real→ boolean
: real * integer→ boolean
: clock * clock→ boolean
: clock * integer→ boolean
: integer * clock→ boolean
: clock * real→ boolean
: real * clock→ boolean
: unsigned word[N] * unsigned word[N]→ boolean
: signed word[N] * signed word[N]→ boolean

Arithmetic Operators +, -, *, /

The arithmetic operators + (addition), - (unary negation or binary subtraction), * (multiplication) and / (division)
have the following signature:

+, -, *, / : integer * integer→ integer
: integer * real→ real
: real * integer→ real
: clock * clock→ clock
: clock * integer→ real
: integer * clock→ real
: clock * real→ real
: real * clock→ real
: unsigned word[N] * unsigned word[N]→ unsigned word[N]
: signed word[N] * signed word[N]→ signed word[N]

- (unary) : integer→ integer
: real→ real
: clock→ clock
: unsigned word[N]→ unsigned word[N]
: signed word[N]→ signed word[N]

Before checking the expression for being correctly typed, the implicit type conversion can be applied to one of
the operands. If the operators are applied to unsigned word[N] or signed word[N] type, then the operations are
performed modulo 2N .

The result of the / operator is the quotient from the division of the first operand by the second. For operands
of type integer, the result of the / operator is the algebraic quotient with any fractional part discarded (this is
often called “truncation towards zero”). If the quotient a/b is representable, the expression (a/b)*b + (a mod

b) shall equal a. If the value of the second operand is zero, the behavior is undefined and an error is thrown by
NUXMV. The semantics is equivalent to the corresponding one of C/C++ languages. For operands of type real,
the result of the / operator is the algebraic quotient where the fractional part (if any) is kept.

Copyright ©2019 by FBK. 17

nuXmv 2.0.0 User Manual

Similarly to NUSMV, we adopt this new semantics for the division / operator. We refer to the NUSMV user
manual [CCCJ+10] for more details on this respect.

Remainder Operator mod

The result of the mod operator is the algebraic remainder of the division. If the value of the second operand is
zero, the behavior is undefined and an error is thrown by NUXMV.

The signature of the remainder operator is:

mod : integer * integer→ integer
: unsigned word[N] * unsigned word[N]→ unsigned word[N]
: signed word[N] * signed word[N]→ signed word[N]
: clock * clock→ clock
: clock * integer→ real
: integer * clock→ real

The semantics of mod operator is equivalent to the corresponding operator % of C/C++ languages. Thus if the
quotient a/b is representable, the expression (a/b)*b + (a mod b) shall equal a.

Note: in older versions of NUSMV (≤ 2.4.0) the semantics of quotient and remainder were different. Having
the division and remainder operators / and mod be of the current, i.e. C/C++’s, semantics the older semantics of
division was given by the formula:

IF (a mod b < 0) THEN (a / b − 1) ELSE (a / b)
and the semantics of remainder operator was given by the formula:

IF (a mod b < 0) THEN (a mod b + b) ELSE (a mod b)
Note that in both interpretations the equation (a/b)*b + (a mod b) = a holds. For example, in the current
version of NUXMV the following holds:

7/5 = 1 7 mod 5 = 2
-7/5 = -1 -7 mod 5 = -2
7/-5=-1 7 mod -5 = 2
-7/-5=1 -7 mod -5 = -2

whereas in the old semantics the equations were
7/5 = 1 7 mod 5 = 2
-7/5 = -2 -7 mod 5 = 3
7/-5=-1 7 mod -5 = 2
-7/-5=0 -7 mod -5 = -7

When supplied, the command line option -old div op switches the semantics of division and remainder to the old
one.

Shift Operators <<, >>

The signature of the shift operators is:

<<, >> : unsigned word[N] * integer→ unsigned word[N]
: signed word[N] * integer→ signed word[N]
: unsigned word[N] * unsigned word[M]→ unsigned word[N]
: signed word[N] * unsigned word[M]→ signed word[N]

Before checking the expression for being correctly typed, the right operand can be implicitly converted from
boolean to integer type.

Left shift << (right shift >>) operation shifts to the left (right) the bits of the left operand by the number
specified in the right operand. A shift by N bits is equivalent to N shifts by 1 bit. A bit shifted behind the word
bound is lost. During shifting a word is padded with zeros with the exception of the right shift for signed word[•],
in which case a word is padded with its highest bit. For instance,

0ub4 0101 << 2 is equal to 0sb4 1011 >> 2 is equal to
0ub4 0100 << 1 is equal to 0sb4 1110 >> 1 is equal to
0ub4 1000 << 0 is equal to 0sb4 1111 >> 0 is equal to
0ub4 1000 and 0sb4 1111

Copyright ©2019 by FBK. 18

nuXmv 2.0.0 User Manual

It has to be remarked that the shifting requires the right operand to be greater or equal to zero and less then or
equal to the width of the word it is applied to. NUXMV raises an error if a shift is attempted that does not satisfy
this restriction.

Index Subscript Operator []

The index subscript operator extracts one element of an array in the typical fashion. On the left of [] there must
be an expression of array type. The index expression in the brackets has to be an expression of integer or word[•]
type with value greater or equal to lower bound and less or equal to the upper bound of the array. The signature
of the index subscript operator is:

[] : array N..M of subtype * word[N]→ subtype
: array N..M of subtype * integer→ subtype

For example, for below declarations 2 :

MODULE main
VAR a : array -1 .. 4 of array 1 .. 2 of boolean;
DEFINE d := [[12, 4], [-1,2]];
VAR r : 0..1;

expressions a[-1], a[0][r+1] and d[r][1] are valid whereas a[0], a[0][r] and d[0][r-1] will raise an
out of bound error.

Bit Selection Operator [:]

The bit selection operator extracts consecutive bits from a unsigned word[•] or signed word[•] expression,
resulting in a new unsigned word[•] expression. This operation always decreases the width of a word or leaves
it intact. The expressions in the brackets have to be integer constants which specify the high and low bound.
The high bound must be greater than or equal to the low bound. The bits count from 0. The result of the
operations is unsigned word[•] value consisting of the consecutive bits beginning from the high bound of the
operand down to, and including, the low bound bit. For example, 0sb7 1011001[4:1] extracts bits 1 through 4
(including 1st and 4th bits) and is equal to 0ub4 1100. 0ub3 101[0:0] extracts bit number 0 and is equal to 0ub1 1.

The signature of the bit selection operator is:

[:] : unsigned word[N] * integerh * integerl → unsigned word[integerh − integerl + 1]
: signed word[N] * integerh * integerl → unsigned word[integerh − integerl + 1]

where 0 ≤ integerl ≤ integerh < N

Word Concatenation Operator ::

The concatenation operator joins two words (unsigned word[•] or signed word[•] or both) together to create a
larger unsigned word[•] type. The operator itself is two colons (::), and its signature is as follows:

:: : word[M] * word[N]→ unsigned word[M+N]

where word[N] is unsigned word[N] or signed word[N]. The left-hand operand will make up the upper bits of
the new word, and the right-hand operand will make up the lower bits. The result is always unsigned word[•]. For
example, given the two words w1 := 0ub4 1101 and w2 := 0sb2 00, the result of w1::w2 is 0ub6 110100.

Extend Word Conversions

extend operator increases the width of a word by attaching additional bits on the left. If the provided word is
unsigned then zeros are added, otherwise if the word is signed the highest (sing) bit is repeated corresponding
number of times.

2See 2.3.3) for array defines and 2.3.1 for array variables.

Copyright ©2019 by FBK. 19

nuXmv 2.0.0 User Manual

The signature of the operator is:

extend : unsigned word[N] * integer→ unsigned word[N+integer]
: signed word[N] * integer→ signed word[N+integer]

For example:

extend(0ub3 101, 2) = 0ub5 00101
extend(0sb3 101, 2) = 0sb5 11101
extend(0sb3 011, 2) = 0sb5 00011

Note that the right operand of extend has to be an integer constant greater or equal to zero.

Resize Word Conversions

resize operator provides a more comfortable way of changing the word of a width. The behavior of this operator
can be described as follows:

Let w be a M bits unsigned word[•] and N be the required width: if M = N, w is returned unmodified; if N is
less than M, bits in the range [N-1:0] are extracted from w; if N is greater than M, w is extended of (N - M) bits
up to required width, padding with zeroes.

Let w be a M bits signed word[•] and N be the required width: if M = N, w is returned unmodified; if N is
less than M, bits in the range [N-2:0] are extracted from w, while N-1-ith bit is forced to preserve the value of the
original sign bit of w (M-1-ith bit); if N is greater than M, w is extended of (N - M) bits up to required width,
extending sign bit.

The signature of the operator is:

resize : unsigned word[•] * integer→ unsigned word[integer]
: signed word[•] * integer→ signed word[integer]

Set Expressions

The set expression is an expression defining a set of boolean, integer and symbolic enum values. A set expres-
sion can be created with the union operator. For example, 1 union 0 specifies the set of values 1 and 0. One
or both of the operands of union can be sets. In this case, union returns a union of these sets. For example,
expression (1 union 0) union -3 specifies the set of values 1, 0 and -3.

Note that there cannot be a set of sets in NUXMV . Sets can contain only singleton values, but not other sets.
The signature of the union operator is:

union : boolean set * boolean set→ boolean set
: integer set * integer set→ integer set
: symbolic set * symbolic set→ symbolic set
: integers-and-symbolic set * integers-and-symbolic set
→ integers-and-symbolic set

Before checking the expression for being correctly typed, if it is possible, both operands are converted to their
counterpart set types 3, which virtually means converting individual values to singleton sets. Then both operands
are implicitly converted to a minimal type that covers both operands. If after these manipulations the operands do
not satisfy the signature of union operator, an error is raised by NUXMV.

There is also another way to write a set expression by enumerating all its values between curly brackets. The
syntactic rule for the values in curly brackets is:

set_body_expr ::
basic_expr

| set_body_expr , basic_expr

3See 2.1.10 for more information about the set types and their counterpart types

Copyright ©2019 by FBK. 20

nuXmv 2.0.0 User Manual

Enumerating values in curly brackets is semantically equivalent to writing them connected by union operators.
For example, expression {exp1, exp2, exp3} is equivalent to exp1 union exp2 union exp3. Note that
according to the semantics of union operator, expression {{1, 2}, {3, 4}} is equivalent to {1, 2, 3, 4},
i.e. there is no actually set of sets.

Set expressions can be used only as operands of union and in operations, as the right operand of case and
as the second and the third operand of (• ? • : •) expressions and assignments. In all other places the use of set
expressions is prohibited.

Inclusion Operator in

The inclusion operator ‘in’ tests the left operand for being a subset of the right operand. If either operand
is a number or a symbolic value instead of a set, it is coerced to a singleton set. The signature of the in operator is:

in : boolean set * boolean set→ boolean
: integer set * integer set→ boolean
: symbolic set * symbolic set→ boolean
: integers-and-symbolic set * integers-and-symbolic set→ boolean

Similar to union operation, before checking the expression for being correctly typed, if it is possible, both
operands are converted to their counterpart set types 4. Then, if required, implicit type conversion is carried
out on one of the operands.

READ Expressions

The read operator ’READ’ extracts one element of an array at particular index. The first argument of the operator
must be an expression of type either word-array or int-array, and the type of second argrument expression must
be same as of the index type of the array expression in the first argument. The signature of the READ is:

READ : array word[N] of subtype * word[N]→ subtype
: array integer of subtype * integer→ subtype

WRITE Expressions

The write operator ’WRITE’ updates one element at a particular index of an array and returns the updated array
as a new array. The first argument of the operator must be an expression of type either word-array or int-array.
The type of the second and third argument expressions must be same as of the index type and element type of the
array expression in the first argument. The signature of the WRITE is:

WRITE : array word[N] of subtype * word[N] * subtype→ array word[N] of subtype
: array integer of subtype * integer * subtype→ array integer of subtype

CONSTARRAY Expressions

The constant array ’CONSTARRAY’ is a special constructor to create an array of given type having elements set to
a uniform given value. The signature of CONSTARRAY is the following:

4See 2.1.10 for more information about the set types and their counterpart types

Copyright ©2019 by FBK. 21

nuXmv 2.0.0 User Manual

CONSTARRAY : (array integer of subtype) * boolean→ (array integer of subtype)
CONSTARRAY : (array integer of subtype) * integer→ (array integer of subtype)
CONSTARRAY : (array integer of subtype) * real→ (array integer of subtype)
CONSTARRAY : (array integer of subtype) * symbolic enum→ (array integer of subtype)
CONSTARRAY : (array integer of subtype) * integers-and-symbolic enum→ (array integer of subtype)
CONSTARRAY : (array integer of subtype) * unsigned word[N]→ (array integer of subtype)
CONSTARRAY : (array integer of subtype) * signed word[N]→ (array integer of subtype)
CONSTARRAY : (array word[N] of subtype) * boolean→ (array word[N] of subtype)
CONSTARRAY : (array word[N] of subtype) * integer→ (array word[N] of subtype)
CONSTARRAY : (array word[N] of subtype) * real→ (array word[N] of subtype)
CONSTARRAY : (array word[N] of subtype) * symbolic enum→ (array word[N] of subtype)
CONSTARRAY : (array word[N] of subtype) * integers-and-symbolic enum→ (array word[N] of subtype)
CONSTARRAY : (array word[N] of subtype) * unsigned word[N]→ (array word[N] of subtype)
CONSTARRAY : (array word[N] of subtype) * signed word[N]→ (array word[N] of subtype)

For example, a constant array CONSTARRAY(typeof(a), 0) (suppose that a is of type array integer of

integer), means an int-array of type array integer of integer with all elements value set to 0.

Typeof Expressions

The typeof expression is specifically used as a first argument in the constant array expressions. Basically it is
used to get the type of an array variable. The typeof expression has the following syntax:

typeof expr :: typeof (variable identifier)

Case Expressions

A case expression has the following syntax:

case_expr :: case case_body esac

case_body ::
basic_expr : basic_expr ;

| case_body basic_expr : basic_expr ;

A case expr returns the value of the first expression on the right hand side of ‘:’, such that the corresponding
condition on the left hand side evaluates to TRUE. For example, the result of the expression

case
left_expression_1 : right_expression_1 ;
left_expression_2 : right_expression_2 ;
...
left_expression_N : right_expression_N ;
esac

is right expression k such that for all i from 0 to k − 1, left expression i is FALSE, and
left expression k is TRUE. It is an error if all expressions on the left hand side evaluate to FALSE.

The type of expressions on the left hand side must be boolean. If one of the expression on the right is of a
set type then, if it is possible, all remaining expressions on the right are converted to their counterpart set types
5. The type of the whole expression is such a minimal type6 that all of the expressions on the right (after possible
convertion to set types) can be implicitly converted to this type. If this is not possible, NUXMV throws an error.

Note: Prior to version 2.5.1, using 1 as left expression N was pretty common, e.g:

5See 2.1.10 for information on set types and their counterpart types
6See Section 2.1.11 [Type Order], page 10 for the information on the order of types.

Copyright ©2019 by FBK. 22

nuXmv 2.0.0 User Manual

case
cond1 : expr1;
cond2 : expr2;
...
1 : exprN; -- otherwise

esac

Since version 2.5.1 integer values are no longer implicitly casted to boolean, and 1 has to be written as TRUE
instead.

If-Then-Else expressions

In certain cases, the syntax described above may look a bit awkard. In simpler cases, it is possible to use the
alternative, terser, (• ? • : •) expression. This construct is defined as follows:

cond_expr ? basic_expr1 : basic_expr2

This expression evaluates to basic expr1 if the condition in cond expr evaluates to true, and to basic expr2
otherwise. Therefore, the expressions cond1 ? expr1 : expr2 and case cond1 : expr1; TRUE :

expr2; esac are equivalent.

Basic Next Expression

Next expressions refer to the values of variables in the next state. For example, if a variable v is a state
variable, then next(v) refers to that variable v in the next time step. A next applied to a complex expression
is a shorthand method of applying next to all the variables in the expressions recursively. Example: next((1 +

a) + b) is equivalent to (1 + next(a)) + next(b). Note that the next operator cannot be applied twice,
i.e. next(next(a)) is not allowed.

The syntactic rule is:

basic_next_expr :: next (basic_expr)

A next expression does not change the type.

Count Operator

The count operator counts the number of expressions which are true. The count operator is a syntactic sugar for

toint (bool_expr1) +

toint (bool_expr2) +

... +

toint (bool_exprN)

This operator has been introduced in version 2.5.1, to simplify the porting of those models which exploited the
implicit casting of integer to boolean to encoding e.g. predicates like:

(b0 + b1 + ... + bN) < 3 -- at most two bits are enabled Since version 2.5.1, this ex-
pression can be written as:

count(b0, b1, ... , bN) < 3

2.2.4 Simple and Next Expressions
Simple expressions are expressions built only from the values of variables in the current state. Therefore,
the simple expression cannot have a next operation inside and the syntax of simple expressions is as
follows:

simple_expr :: basic_expr

Copyright ©2019 by FBK. 23

nuXmv 2.0.0 User Manual

with the alternative basic next expr not allowed. Simple expressions can be used to specify sets of states,
for example, the initial set of states. The next expression relates current and next state variables to express
transitions in the FSM. The next expression can have next operation inside, i.e.

next_expr :: basic_expr

with the alternative basic next expr allowed.

2.2.5 Type conversion operators
Integer conversion operator

toint converts an unsigned word[•] constant or a signed word[•] constant, or a boolean expression to an
integer representing its value. Also integer expressions are allowed, but no action is performed. The signature
of this conversion operator is:

toint : integer→ integer
toint : boolean→ integer
toint : unsigned word[•]→ integer
toint : signed word[•]→ integer

floor convertion operator

The operator floor maps a real number to the largest previous integer. If applied to an integer it returns the
integer itself. It has the following signature:

floor : integer→ integer
: real→ integer

Boolean conversion operator

bool converts unsigned word[1] and any expression of type integer (e.g. 1 + 2) to boolean. Also boolean
expressions are allowed, but no action is perfomed. In case of integer expression, the result of the conversion is
FALSE if the expression resolves to 0, TRUE otherwise. In case of unsigned word[1] expression, the conversion
obeys the following table:

bool(0ub1 0) = FALSE
bool(0ub1 1) = TRUE

Integer to Word Constants Conversion

swconst, uwconst convert an integer constant into a signed word[•] constant or unsigned word[•]
constant of given size respectively. The signature of these conversion operator is:

swconst : integer * integer→ signed word[•]
uwconst : integer * integer→ unsigned word[•]

Word1 Explicit Conversions

word1 converts a boolean to a unsigned word[1]. The signature of this conversion operator is:

word1 : boolean→ unsigned word[1]

The conversion obeys the following table:

word1(FALSE) = 0ub1 0
word1(TRUE) = 0ub1 1

Copyright ©2019 by FBK. 24

nuXmv 2.0.0 User Manual

Unsigned and Signed Explicit Conversions

unsigned converts a signed word[N] to an unsigned word[N], while signed performs the opposite operation
and converts an unsigned word[N] to a signed word[N]. Both operations do not change the bit representation of
a provided word. The signatures of these conversion operators are:

unsigned : signed word[N]→ unsigned word[N]
signed : unsigned word[N]→ signed word[N]

For example:

signed(0ub 101) = 0sb 101
signed(0ud3 5) = -0sd3 3
unsigned(0sb 101) = 0usb 101
unsigned(-0sd3 3) = 0ud3 5

General Integer to Word Conversions

unsigned word[N] converts an integer expression to an unsigned word[N], and signed word[N] converts
an integer to signed word[N].

The signatures of these conversion operators are:

unsigned word[N] : integer→ unsigned word[N]
signed word[N] : integer→ signed word[N]

The semantics of unsigned word[N](x) when x is non-negative is given by the following relation:

∃y ≥ 0.(x =

N∑
i=0

((unsigned word[N](x)[i : i] = 0ub 1) ? 2i : 0) + 2N ∗ y).

When x is negative, unsigned word[N](x) = −(unsigned word[N](−x)). Finally,
signed word[N](x) = signed(unsigned word[N](x)).

2.3 Definition of the FSM
We consider a Finite State Machine (FSM) described in terms of state variables input variables, and frozen vari-
ables, which may assume different values in different states; of a transition relation describing how inputs leads
from one state to possibly many different states; and of Fairness conditions that describe constraints on the valid
paths of the execution of the FSM. In this document, we distinguish among constraints (used to constrain the
behavior of a FSM, e.g. a modulo 4 counter increments its value modulo 4), and specifications (used to express
properties to verify on the FSM (e.g. the counter reaches value 3).

In the following it is described how these concepts can be declared in the NUXMV language.

2.3.1 Variable Declarations
A variable can be an input, a frozen, or a state variable. The declaration of a variable specifies the variable’s type
with the help of type specifier.

Type Specifiers

A type specifier has the following syntax:

type_specifier ::
simple_type_specifier

| module_type_specifier

simple_type_specifier ::
boolean

Copyright ©2019 by FBK. 25

nuXmv 2.0.0 User Manual

| word [basic_expr]
| unsigned word [basic_expr]
| signed word [basic_expr]
| real
| integer
| { enumeration_type_body }
| basic_expr .. basic_expr
| array basic_expr .. basic_expr

of simple_type_specifier

| array word [basic_expr]
of simple_type_specifier

| array integer
of simple_type_specifier

enumeration_type_body ::
enumeration_type_value

| enumeration_type_body , enumeration_type_value

enumeration_type_value ::
symbolic_constant

| integer_number

There are two kinds of type specifier: a simple type specifier and a module type specifier.
The module type specifier is explained later in Section 2.3.12 [MODULE Instantiations], page 34. The
simple type specifier comprises boolean type, integer type, enumeration types, unsigned word[•],
signed word[•] and arrays types.

State Variables

A state of the model is an assignment of values to a set of state and frozen variables. State variables (and also
instances of modules) are declared by the notation:

var_declaration :: VAR var_list

var_list :: identifier : type_specifier ;
| var_list identifier : type_specifier ;

A variable declaration specifies the identifier of the variables and its type. A variable can take the values
only from the domain of its type. In particular, a variable of a enumeration type may take only the values
enumerated in the type specifier of the declaration.

Input Variables

IVAR s (input variables) are used to label transitions of the Finite State Machine. The difference between the
syntax for the input and state variables declarations is the keyword indicating the beginning of a declaration:

ivar_declaration :: IVAR simple_var_list
simple_var_list ::

identifier : simple_type_specifier ;
| simple_var_list identifier : simple_type_specifier ;

Another difference between input and state variables is that input variables cannot be instances of modules. The
usage of input variables is more limited than the usage of state variables which can occur everywhere both in the
model and specifications. Namely, input variables cannot occur in:

• Left-side of assignments. For example all these assignments are not allowed:

Copyright ©2019 by FBK. 26

nuXmv 2.0.0 User Manual

IVAR i : boolean;

ASSIGN

init(i) := TRUE;

next(i) := FALSE;

• INIT statements. For example:

IVAR i : boolean;

VAR s : boolean;

INIT i = s

• Scope of next expressions. For example:

IVAR i : boolean;

VAR s : boolean;

TRANS i -> s – this is allowed
TRANS next(i -> s) – this is NOT allowed

• Some specification kinds: CTLSPEC, SPEC, COMPUTE, PSLSPEC. For example:

IVAR i : boolean;

VAR s : boolean;

SPEC AF (i -> s) – this is NOT allowed
LTLSPEC F (X i -> s) – this is allowed
INVARSPEC (i -> s) – this is allowed

Frozen Variables

Frozen variables are variables that retain their initial value throughout the evolution of the state machine; this initial
value can be constrained in the same ways as for normal state variables. Similar to input variables the difference
between the syntax for the frozen and state variables declarations is the keyword indicating the beginning of a
declaration:

frozenvar_declaration :: FROZENVAR simple_var_list

The semantics of a frozen variable fv is that of a state variable accompanied by an assignment that keeps its
value constant (it is handled more efficiently, though):

ASSIGN next(fv) := fv;

As a consequence, frozen variables may not have their current and next value set in an ASSIGN statement,
i.e. statements such as ASSIGN next(fv) := expr; and ASSIGN fv := expr; are illegal. Apart from that
frozen variables may occur in the definition of the FSM in any place in which a state variable may occur. Some
examples are as follows:

• Left-side current and next state assignments are illegal, while init state assignments are allowed:

FROZENVAR a : boolean;

FROZENVAR b : boolean;

FROZENVAR c : boolean;

VAR d : boolean;

FROZENVAR e : boolean;

ASSIGN

init(a) := d; -- legal

next(b) := d; -- illegal

c := d; -- illegal

e := a; -- also illegal

• INIT, TRANS, INVAR, FAIRNESS, JUSTICE, and COMPASSION statements are all legal. So is the scope of a
next expression. For example:

Copyright ©2019 by FBK. 27

nuXmv 2.0.0 User Manual

-- the following has an empty state space

FROZENVAR a : boolean;

INIT a

INVAR !a

-- alternatively, this has two initial states, deadlocking

FROZENVAR b : boolean;

TRANS next(b) <-> !b

-- and that’s just unfair

FROZENVAR c : boolean;

FAIRNESS c

FAIRNESS !c

• All kinds of specifications involving frozen variables are allowed, e.g.:

FROZENVAR c : boolean;

-- True by definition.

SPEC AG ((c -> AG c) & ((!c) -> AG !c))

-- Here, neither is true.

INVARSPEC c

INVARSPEC !c

-- False (as above).

LTLSPEC (G F c) & (G F !c)

Examples

Below are examples of state, frozen, and input variable declarations:

VAR a : boolean;

FROZENVAR b : 0..1;

IVAR c : {TRUE, FALSE};

The variable a is a state variable, b is a frozen variable, and c is an input variable; In the following examples:

VAR d : {stopped, running, waiting, finished};
VAR e : {2, 4, -2, 0};
VAR f : {1, a, 3, d, q, 4};

the variables d, e and f are of enumeration types, and all their possible values are specified in the type

specifiers of their declarations.

VAR g : unsigned word[3];

VAR h : word[3];

VAR i : signed word[4];

The variables g and h are typeunsigned word 3-bits-wide (i.e. unsigned word[3]), and i is an signed word
4-bits-wide (i.e. signed word[4]).

VAR j : array -1..1 of boolean;

The variable j is an array of boolean elements with indexes -1, 0 and 1.

Copyright ©2019 by FBK. 28

nuXmv 2.0.0 User Manual

2.3.2 DEFINE Declarations
In order to make descriptions more concise, a symbol can be associated with a common expression, and a DEFINE
declaration introduces such a symbol. The syntax for this kind of declaration is:

define_declaration :: DEFINE define_body

define_body :: complex_identifier := next_expr ;
| define_body identifier := next_expr ;

DEFINE associates an identifier on the left hand side of the ‘:=’ with an expression on the right side. A
define statement can be considered as a macro. Whenever a define complex identifier occurs in an expres-
sion, the complex identifier is syntactically replaced by the expression it is associated with. The associated
expression is always evaluated in the context of the statement where the complex identifier is declared (see
Section 2.3.16 [Context], page 37 for an explanation of contexts). Forward references to defined symbols are al-
lowed but circular definitions are not, and result in an error. The difference between defined symbols and variables
is that while variables are statically typed, definitions are not.

2.3.3 Array Define Declarations
It is possible to specify an array expressions. This feature is experimental and currently available only through
DEFINE declaration. The syntax for this kind of declaration is:

array_define_declaration ::
DEFINE complex_identifier := array_expression ;

array_expression :: [array_contents]
| [array_expression_list]

array_expression_list :: array_expression
| array_expression , array_expression_list

array_contents :: next_expr , array_contents
| next_expr

Array DEFINE associates an complex identifier on the left hand side of the ‘:=’ with an array expression. As
a normal DEFINE statement an array define is considered as a macro. Whenever an array complex identifier

occurs in an expression, the complex identifier is syntactically replaced by the array expression it is associ-
ated with. As with normal DEFINE an array DEFINE expression is always evaluated in the context of the statement
where the complex identifier is declared and forward references to defined symbols are allowed but circular
definitions are not.

The type of an array expression [exp1, exp2, ..., expN] is array 0..N-1 of type where type is the
least type such that all exp1, exp2, ...expN can be converted to it.

It is not possible to declare asymmetrical arrays. This means that it is forbidden to declare an array with a
different number of elements in a dimension. For example, the following code will result in an error:

DEFINE
x := [[1,2,3], [1,2]];

2.3.4 CONSTANTS Declarations
CONSTANTS declarations allow the user to explicitly declare symbolic constants that might occur or not within
the FSM that is being defined. CONSTANTS declarations are expecially useful in those conditions that require
symbolic constants to occur only in DEFINEs body (e.g. in generated models). For an example of usage see also
the command write boolean model. A constant is allowed to be declared multiple times, as after the first
declaration any further declaration will be ignored. CONSTANTS declarations are an extension of the original SMV
grammar. They have been integrated in NUSMV and inherited in NUXMV. The syntax for this kind of declaration
is:

Copyright ©2019 by FBK. 29

nuXmv 2.0.0 User Manual

constants_declaration :: CONSTANTS constants_body ;

constants_body :: identifier
| constants_body , identifier

2.3.5 Function Declaration
In NUXMV it is also possible to define uninterpreted functions. These functions are rigid, i.e. their denotation
does not change from two different time points. These functions can be seen as parameters: the denotation of the
function is defined in the initial state and kept from that point on. The syntax for declaring functions is:

function declaration :: FUN function list

function list :: function declaration
| function list function declaration

function declaration :: identifier : function type specifier ;
function type specifier :: function args type specifier -> simple type specifier

function args type specifier :: simple type specifier

| function args type specifier * simple type specifier

below is reported a simple example of declaring a function funct1 that takes two reals as arguments, and
returns an integer, and a function funct2 that takes two reals and returns an unsigned word of size 32.

FUN
funct1 : real * real -> integer ;

funct2 : real * real -> unsigned word[32] ;

Note: Currently in NUXMV we only support a limited number of data types both as return type and as type
of each argument of a function. In particular, the supported types are: boolean, real, integer, and word[N].
Support for richer types (e.g. enumeratives, bouded integers and array) is ongoing.

2.3.6 INIT Constraint
The set of initial states of the model is determined by a boolean expression under the INIT keyword. The syntax
of an INIT constraint is:

init_constrain :: INIT simple_expr [;]

Since the expression in the INIT constraint is a simple expression, it cannot contain the next() operator.
The expression also has to be of type boolean. If there is more than one INIT constraint, the initial set is the
conjunction of all of the INIT constraints.

2.3.7 INVAR Constraint
The set of invariant states can be specified using a boolean expression under the INVAR keyword. The syntax of
an INVAR constraint is:

invar_constraint :: INVAR simple_expr [;]

Since the expressions in the INVAR constraint are simple expression s, they cannot contain the next() opera-
tor. If there is more than one INVAR constraint, the invariant set is the conjunction of all of the INVAR constraints.

Copyright ©2019 by FBK. 30

nuXmv 2.0.0 User Manual

2.3.8 TRANS Constraint
The transition relation of the model is a set of current state/next state pairs. Whether or not a given pair is in this
set is determined by a boolean expression, introduced by the TRANS keyword. The syntax of a TRANS constraint
is:

trans_constraint :: TRANS next_expr [;]

It is an error for the expression to be not of the boolean type. If there is more than one TRANS constraint, the
transition relation is the conjunction of all of TRANS constraints.

2.3.9 ASSIGN Constraint
An assignment has the form:

assign_constraint :: ASSIGN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier := simple_expr

| init (complex_identifier) := simple_expr
| next (complex_identifier) := next_expr

On the left hand side of the assignment, complex identifier denotes the current value of a variable,
‘init(complex identifier)’ denotes its initial value, and ‘next(complex identifier)’ denotes its value
in the next state. If the expression on the right hand side evaluates to a not-set expression such as integer

number or symbolic constant, the assignment simply means that the left hand side is equal to the right hand
side. On the other hand, if the expression evaluates to a set, then the assignment means that the left hand side is
contained in that set. It is an error if the value of the expression is not contained in the range of the variable on the
left hand side.

Semantically assignments can be expressed using other kinds of constraints:

ASSIGN a := exp; is equivalent to INVAR a in exp;

ASSIGN init(a) := exp; is equivalent to INIT a in exp;

ASSIGN next(a) := exp; is equivalent to TRANS next(a) in exp;

Notice that, an additional constraint is forced when assignments are used with respect to their corresponding
constraints counterpart: when a variable is assigned a value that it is not an element of its declared type, an error
is raised.

The allowed types of the assignment operator are:
:= : integer * integer

: real * integer
: real * real
: integer * integer set
: symbolic enum * symbolic enum
: symbolic enum * symbolic set
: integers-and-symbolic enum * integers-and-symbolic enum
: integers-and-symbolic enum * integers-and-symbolic set
: unsigned word[N] * unsigned word[N]
: signed word[N] * signed word[N]
: array word[N] of subtype * array word[N] of subtype
: array integer of subtype * array integer of subtype

Before checking the assignment for being correctly typed, the implicit type conversion can be applied to the right
operand.

Copyright ©2019 by FBK. 31

nuXmv 2.0.0 User Manual

Rules for assignments

Assignments describe a system of equations that say how the FSM evolves through time. With an arbitrary set of
equations there is no guarantee that a solution exists or that it is unique. We tackle this problem by placing certain
restrictive syntactic rules on the structure of assignments, thus guaranteeing that the program is implementable.

The restriction rules for assignments are:

• The single assignment rule – each variable may be assigned only once.

• The circular dependency rule – a set of equations must not have “cycles” in its dependency graph not
broken by delays (i.e. by a next, see examples below).

The single assignment rule disregards conflicting definitions, and can be formulated as: one may either assign
a value to a variable “x”, or to “next(x)” and “init(x)”, but not both. For instance, the following are legal
assignments:

Example 1 x := expr1 ;

Example 2 init(x) := expr1 ;

Example 3 next(x) := expr1 ;

Example 4 init(x) := expr1 ;
next(x) := expr2 ;

while the following are illegal assignments:

Example 1 x := expr1 ;
x := expr2 ;

Example 2 init(x) := expr1 ;
init(x) := expr2 ;

Example 3 x := expr1 ;
init(x) := expr2 ;

Example 4 x := expr1 ;
next(x) := expr2 ;

If we have an assignment like x := y ;, then we say that x depends on y. A combinatorial loop is a cycle of
dependencies not broken by delays. For instance, the assignments:

x := y;
y := x;

form a combinatorial loop. Indeed, there is no fixed order in which we can compute x and y, since at each time
instant the value of x depends on the value of y and vice-versa. We can introduce a “unit delay dependency” using
the next() operator.

x := y;
next(y) := x;

In this case, there is a unit delay dependency between x and y. A combinatorial loop is a cycle of dependencies
whose total delay is zero. In NUXMV (as well as in NUSMV) combinatorial loops are illegal. This guarantees
that for any set of equations describing the behavior of variable, there is at least one solution. There might be
multiple solutions in the case of unassigned variables or in the case of non-deterministic assignments such as in
the following example,

next(x) := case x = 1 : 1;
TRUE : {0,1};

esac;

Copyright ©2019 by FBK. 32

nuXmv 2.0.0 User Manual

2.3.10 FAIRNESS Constraints
A fairness constraint restricts the attention only to fair execution paths. When evaluating specifications, the model
checker considers path quantifiers to apply only to fair paths.

NUXMV (as well as NUSMV) supports two types of fairness constraints, namely justice constraints and com-
passion constraints. A justice constraint consists of a formula f, which is assumed to be true infinitely often in
all the fair paths. In NUXMV, justice constraints are identified by keywords JUSTICE and, for backward compat-
ibility, FAIRNESS. A compassion constraint consists of a pair of formulas (p,q); if property p is true infinitely
often in a fair path, then also formula q has to be true infinitely often in the fair path. In NUXMV, compassion
constraints are identified by keyword COMPASSION. 7

Note: If compassion constraints are used, then the model must not contain any input variable. Currently,
NUXMV does not enforce this so it is the responsibility of the user to make sure that this is the case.

Fairness constraints are declared using the following syntax (all expressions are expected to be boolean):

fairness_constraint ::
FAIRNESS simple_expr [;]

| JUSTICE simple_expr [;]
| COMPASSION (simple_expr , simple_expr) [;]

A path is considered fair if and only if it satisfies all the constraints declared in this manner.

2.3.11 MODULE Declarations
A module declaration is an encapsulated collection of declarations, constraints and specifications. A module
declaration also opens a new identifier scope. Once defined, a module can be reused as many times as necessary.
Modules are used in such a way that each instance of a module refers to different data structures. A module can
contain instances of other modules, allowing a structural hierarchy to be built. The syntax of a module declaration
is as follows:

module :: MODULE identifier [(module_parameters)] [module_body]

module_parameters ::
identifier

| module_parameters , identifier

module_body ::
module_element

| module_body module_element

module_element ::
var_declaration

| ivar_declaration
| frozenvar_declaration
| define_declaration
| constants_declaration
| assign_constraint
| trans_constraint
| init_constraint
| invar_constraint
| fairness_constraint
| ctl_specification
| invar_specification
| ltl_specification
| pslspec_specification
| compute_specification
| parameter_synth_problem

7Similarly to NUSMV, in the current version of NUXMV, compassion constraints are supported only for BDD-based LTL model checking.
We plan to add support for compassion constraints also for CTL specifications and in Bounded Model Checking in forthcoming releases of
NUXMV.

Copyright ©2019 by FBK. 33

nuXmv 2.0.0 User Manual

| isa_declaration
| pred_declaration
| mirror_declaration

The identifier immediately following the keyword MODULE is the name associated with the module. Module
names have a separate name space in the program, and hence may clash with names of variables and definitions.
The optional list of identifiers in parentheses are the formal parameters of the module.

2.3.12 MODULE Instantiations
An instance of a module is created using the VAR declaration (see Section 2.3.1 [State Variables], page 26) with a
module type specifier (see Section 2.3.1 [Type Specifiers], page 25). The syntax of a module type specifier

is:

module_type_specifier ::
identifier [([parameter_list])]

parameter_list ::
next_expr

| parameter_list , next_expr

A variable declaration with a module type specifier introduces a name for the module instance. The module
type specifier provides the name of the instantiating module and also a list of actual parameters, which are
assigned to the formal parameters of the module. An actual parameter can be any legal next expression (see
Section 2.2.4 [Simple and Next Expressions], page 23). It is an error if the number of actual parameters is different
from the number of formal parameters. Whenever formal parameters occur in expressions within the module, they
are replaced by the actual parameters. The semantic of module instantiation is similar to call-by-reference.8

Here are examples:

MODULE main
...
VAR
a : boolean;
b : foo(a);

...
MODULE foo(x)
ASSIGN
x := TRUE;

the variable a is assigned the value TRUE. This distinguishes the call-by-reference mechanism from a call-by-value
scheme.
Now consider the following program:

MODULE main
...
DEFINE
a := 0;

VAR
b : bar(a);

...
MODULE bar(x)
DEFINE
a := 1;
y := x;

In this program, the value of y is 0. On the other hand, using a call-by-name mechanism, the value of y would be
1, since a would be substituted as an expression for x.
Forward references to module names are allowed, but circular references are not, and result in an error.

Note: NUXMV does no longer support the keyword process.
8This also means that the actual parameters are analyzed in the context of the variable declaration where the module is instantiated, not in

the context of the expression where the formal parameter occurs.

Copyright ©2019 by FBK. 34

nuXmv 2.0.0 User Manual

2.3.13 References to Module Components (Variables and Defines)
As described in Section 2.2.3 [Variables and Defines], page 15, defines and variables can be referenced in
expressions as variable identifiers and define identifiers respectively, both of which are complex

identifiers. The syntax of a complex identifier is:

complex_identifier ::
identifier

| complex_identifier . identifier
| complex_identifier [simple_expression]
| self

Every variable and define used in an expression should be declared. It is possible to have forward references
when a variable or define identifier is used textually before the corresponding declaration.

Notations with . (<DOT>) are used to access the components of modules. For example, if m is an instance of a
module (see Section 2.3.12 [MODULE Instantiations], page 34 for information about instances of modules) then
the expression m.c identifies the component c of the module instance m. This is precisely analogous to accessing
a component of a structured data type.

Note that actual parameters of a module can potentially be instances of other modules. Therefore, parameters
of modules allow access to the components of other module instances, as in the following example:

MODULE main
... VAR

a : bar;
m : foo(a);

...
MODULE bar
VAR
q : boolean;
p : boolean;

MODULE foo(c)
DEFINE
flag := c.q | c.p;

Here, the value of ‘m.flag’ is the logical OR of ‘a.p’ and ‘a.q’.
Individual elements of an array are accessed in the typical fashion with the index given in square brackets. See

2.2.3 for more information.
It is possible to refer to the name that the current module has been instantiated to by using the self built-in

identifier.

MODULE container(init_value1, init_value2)
VAR c1 : counter(init_value1, self);
VAR c2 : counter(init_value2, self);

MODULE counter(init_value, my_container)
VAR v: 1..100;
ASSIGN

init(v) := init_value;
DEFINE

greatestCounterInContainer := v >= my_container.c1.v &
v >= my_container.c2.v;

MODULE main
VAR c : container(14, 7);
SPEC
c.c1.greatestCounterInContainer;

Copyright ©2019 by FBK. 35

nuXmv 2.0.0 User Manual

In this example an instance of the module container is passed to the sub-module counter. In the main module,
c is declared to be an instance of the module container, which declares two instances of the module counter.
Every instance of the counter module has a define greatestCounterInContainer which specifies the con-
dition when this particular counter has the greatest value in the container it belongs to. So a counter needs
access to the parent container to access all the counters in the container.

2.3.14 A Program and the main Module
The syntax of a NUXMV program is:

program :: module_list

module_list ::
module

| module_list module

There must be one module with the name main and no formal parameters. The module main is the one evaluated
by the interpreter.

2.3.15 Namespaces and Constraints on Declarations
Identifiers in the NUXMV input language may reference five different entities: modules, variables, defines, module
instances, and symbolic constants.

Module identifiers have their own separate namespace. Module identifiers can be used in module type

specifiers only, and no other kind of identifiers can be used there (see Section 2.3.12 [MODULE Instantia-
tions], page 34). Thus, module identifiers may be equal to other kinds of identifiers without making the program
ambiguous. However, no two modules should be declared with the same identifier. Modules cannot be declared
in other modules, therefore they are always referenced by simple identifiers.

Variable, define, and module instance identifiers are introduced in a program when the module containing their
declarations is instantiated. Inside this module the variables, defines and module instances may be referenced by
the simple identifiers. Inside other modules, their simple identifiers should be preceded by the identifier of the
module instance containing their declaration and . (<DOT>). Such identifiers are called complex identifier.
The full identifier is a complex identifier which references a variable, define, or a module instance from
inside the main module.

Let us consider the following:

MODULE main
VAR a : boolean;
VAR b : foo;
VAR c : moo;

MODULE foo
VAR q : boolean;

e : moo;

MODULE moo
DEFINE f := 0 < 1;

MODULE not_used
VAR n : boolean;
VAR t : used;

MODULE used
VAR k : boolean;

The full identifier of the variable a is a, the full identifier of the variable q (from the module foo) is b.q, the
full identifier of the module instance e (from the module foo) is b.e, the full identifiers of the define f (from the
module moo) are b.e.f and c.f, because two module instances contain this define. Notice that, the variables n

Copyright ©2019 by FBK. 36

nuXmv 2.0.0 User Manual

and k as well as the module instance t do not have full identifiers because they cannot be accessed from main

(since the module not used is not instantiated).
In the NUXMV language, variable, define, and module instances belong to one namespace, and no two full

identifiers of different variable, define, or module instances should be equal. Also, none of them can be redefined.
A symbolic constant can be introduced by a variable declaration if its type specifier enumerates the

symbolic constant. For example, the variable declaration

VAR a : {OK, FAIL, waiting};

declares the variable a as well as the symbolic constants OK, FAIL and waiting. The full identifiers of
the symbolic constants are equal to their simple complex identifiers with the additional condition – the
variable whose declaration declares the symbolic constants also has a full identifier.

Symbolic constants have a separate namespace, so their identifiers may potentially be equal, for example,
variable identifiers. It is an error, if the same identifier in an expression can simultaneously refer to a symbolic
constant and a variable or a define. A symbolic constant may be declared an arbitrary number of times, but
it must be declared at least once, if it is used in an expression.

2.3.16 Context
Every module instance has its own context, in which all expressions are analyzed. The context can be defined
as the full identifiers of variables declared in the module without their simple identifiers. Let us consider the
following example:

MODULE main
VAR a : foo;
VAR b : moo;

MODULE foo
VAR c : moo;

MODULE moo
VAR d : boolean;

The context of the module main is ‘’ (empty)9, the context of the module instance a (and inside the module foo)
is ‘a.’, the contexts of module moo may be ‘b.’ (if the module instance b is analyzed) and ‘a.c.’ (if the
module instance a.c is analyzed).

2.3.17 ISA Declarations
There are cases in which some parts of a module could be shared among different modules, or could be used as
a module themselves. Similarly to NUSMV, in NUXMV it is possible to declare the common parts as separate
modules, and then use the ISA declaration to import the common parts inside a module declaration. The syntax
of an isa declaration is as follows:

isa_declaration :: ISA identifier

where identifier must be the name of a declared module. The ISA declaration can be thought as a simple
macro expansion command, because the body of the module referenced by an ISA command is replaced to the
ISA declaration.

Warning: ISA is a deprecated feature and will be removed from future versions of NUXMV. Therefore, avoid
the use of ISA declarations. Use module instances instead.

2.3.18 PRED and MIRROR Declarations
When using abstraction-based techniques, such as Counterexample Guided Abstraction Refinement [CGJ+03] or
k-induction with implicit abstraction [Ton09], one may want to declare an initial set of predicates to be used in the
model. This is possible by using the keyword PRED.

The syntax of a pred declaration is as follows:
9 The module main is instantiated with the so called empty identifier which cannot be referenced in a program.

Copyright ©2019 by FBK. 37

nuXmv 2.0.0 User Manual

pred_declaration :: PRED simple_expression [;]
| PRED < identifier > := simple_expression [;]

where identifier is an arbitrary name to be assigned to the predicate.
Another way to specify the predicates to be used in the abstraction-based techniques model consists in “mir-

roring”, i.e. preserving in the abstract space, a variable. A mirrored variable with its type will be declared in
the abstract model as it was declated in the concrete model. Mirrored variables are introduced with the keyword
MIRROR. A mirror declaration is as follows.

mirror_declaration :: MIRROR variable_identifier [;]

2.4 Definition of the Timed Transition System
The language used to describe FSM in NUXMV, showed in section 2.3, is extended to represent Timed Transition
Systems (TTS). The commands to perform actions on these models are enabled by the command line option
-time.

2.4.1 TIME DOMAIN Annotation
The time domain annotation is optional and, if present, it must appear only once in the model and it must precede
the MODULE declarations.

time domain annotation ::
@TIME DOMAIN [none | continuous]

If the time domain annotation is absent the model is equivalent to one with time domain none. If the time domain
is none all language extensions of TTS are not available.

2.4.2 Variable Declarations
This section shows the additional features available for variable declarations in TTS, with respect to the ones
presented in 2.3.1.

Type Specifiers

In TTS an additional simple type specifier is available for input and state variables: clock. All symbols of
this type increment of the same amount during time elapses and can not be used in specifications.

State Variables

var_list :: identifier : type_specifier ;
| var_list identifier : type_specifier ;

In time elapse transitions all variables with type different from clock keep the same assignment.
In TTS a built-in clock state variable time is available. This variable represents the total amount of time

elapsed. time can be used only in expression belonging to the following grammar:

op :: < | <= | = | != | >= | >
timed expr ::

time op untimed expr
time @F~ expr op untimed expr
time @O~ expr op untimed expr

where untimed expr is a real or integer type expression containing neither time, nor time until, nor
time since.

Copyright ©2019 by FBK. 38

nuXmv 2.0.0 User Manual

2.4.3 INVAR Constraint
TTS supports the same invariant constraint described in 2.3.7 for variables of type different from clock. Variables
of type clock are allowed to occur only in the rightmost simple expression of the form below. Furthermore,
this expression must be convex (i.e. a conjunction of atoms).

invar_constraint :: INVAR simple_expr -> simple_expr [;]

2.4.4 URGENT Constraint
The urgent constraints specify a set of states where time elapses are not allowed. The syntax of a URGENT constraint
is:

urgent_constraint :: URGENT next_expr [;]

The expression in the URGENT constraint can not contain variables of type clock. When the specified
next expression holds time does not elapse. If there is more than one URGENT constraint, the urgent set is
the disjunction of all of the URGENT constraints.

2.4.5 TRANS Constraint
In TTS TRANS constraint have the same syntax described in 2.3.8. However, they constrain only the discrete
transitions of the system.

2.4.6 ASSIGN Constraint
In TTS ASSIGN constraint have the same syntax described in 2.3.9. However, assignments that predicate over next
states constrain only the discrete transitions of the system and not time elapses.

The following types of assignment operators are added:

:= : clock * clock
: clock * integer
: clock * real [if time domain is continuous]
: real * clock [if time domain is continuous]

2.4.7 MODULE Declarations
TTS add to the MODULE declarations showed in 2.3.11, the declaration of URGENT constraints.

2.5 Specifications
The specifications to be checked on the FSM can be expressed in temporal logics like Computation Tree Logic
(CTL), Linear Temporal Logic (LTL)extended with Past Operators, and Property Specification Language (PSL)
[psl03] that includes CTL and LTL with Sequential Extended Regular Expressions (SERE), a variant of classical
regular expressions. It is also possible to analyze quantitative characteristics of the FSM by specifying real-time
CTL specifications. Specifications can be positioned within modules, in which case they are preprocessed to
rename the variables according to their context.

CTL and LTL specifications are evaluated by NUXMV in order to determine their truth or falsity in the FSM.
When a specification is discovered to be false, NUXMV constructs and prints a counterexample, i.e. a trace of the
FSM that falsifies the property.

2.5.1 CTL Specifications
A CTL specification is given as a formula in the temporal logic CTL, introduced by the keyword ‘CTLSPEC’
(however, deprecated keyword ‘SPEC’ can be used instead.) The syntax of this specification is:

Copyright ©2019 by FBK. 39

nuXmv 2.0.0 User Manual

ctl_specification :: CTLSPEC ctl_expr [;]
| SPEC ctl_expr [;]
| CTLSPEC NAME identifier := ctl_expr [;]
| SPEC NAME identifier := ctl_expr [;]

The syntax of CTL formulas recognized by NUXMV is as follows:

ctl_expr ::
simple_expr -- a simple boolean expression
| (ctl_expr)
| ! ctl_expr -- logical not
| ctl_expr & ctl_expr -- logical and
| ctl_expr | ctl_expr -- logical or
| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr xnor ctl_expr -- logical NOT exclusive or
| ctl_expr -> ctl_expr -- logical implies
| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally
| EX ctl_expr -- exists next state
| EF ctl_expr -- exists finally
| AG ctl_expr -- forall globally
| AX ctl_expr -- forall next state
| AF ctl_expr -- forall finally
| E [ctl_expr U ctl_expr] -- exists until
| A [ctl_expr U ctl_expr] -- forall until

Since simple expr cannot contain the next operator, ctl expr cannot contain it either. The ctl expr should
also be a boolean expression.

Intuitively the semantics of CTL operators is as follows:

• EX p is true in a state s if there exists a state s′ such that a transition goes from s to s′ and p is true in s′.

• AX p is true in a state s if for all states s′ where there is a transition from s to s′, p is true in s′.

• EF p is true in a state s0 if there exists a series of transitions s0 → s1, s1 → s2, . . . , sn−1 → sn such that
p is true in sn.

• AF p is true in a state s0 if for all series of transitions s0 → s1, s1 → s2, . . . , sn−1 → sn p is true in sn.

• EG p is true in a state s0 if there exists an infinite series of transitions s0 → s1, s1 → s2, . . . such that p is
true in every si.

• AG p is true in a state s0 if for all infinite series of transitions s0 → s1, s1 → s2, . . . p is true in every si.

• E[p U q] is true in a state s0 if there exists a series of transitions s0 → s1, s1 → s2, . . . , sn−1 → sn such
that p is true in every state from s0 to sn−1 and q is true in state sn.

• A[p U q] is true in a state s0 if for all series of transitions s0 → s1, s1 → s2, . . . , sn−1 → sn p is true in
every state from s0 to sn−1 and q is true in state sn.

A CTL formula is true if it is true in all initial states.
For a detailed description about the semantics of PSL operators, please see [psl03].

2.5.2 Invariant Specifications
It is also possible to specify invariant specifications with special constructs. Invariants are propositional formulas
which must hold invariantly in the model. The corresponding command is INVARSPEC, with syntax:

invar_specification :: INVARSPEC next_expr ;
| INVARSPEC NAME identifier := next_expr [;]

Copyright ©2019 by FBK. 40

nuXmv 2.0.0 User Manual

This statement is intuitively equivalent to

CTLSPEC AG next_expr ;

but can be checked by a specialised algorithm during reachability analysis. Invariant Specifications, differently
from corresponding CTL, can contain next operators. Fairness constraints are not taken into account during
invariant checking.

2.5.3 LTL Specifications
LTL specifications are introduced by the keyword LTLSPEC. The syntax of this specification is:

ltl_specification :: LTLSPEC ltl_expr [;]
| LTLSPEC NAME identifier := ltl_expr [;]

The syntax of LTL formulas recognized by NUXMV is as follows:

at_expr ::
next_expr
| ltl_expr
| at_expr at next at_expr -- at next
| at_expr @F~ at_expr -- at next
| at_expr at last at_expr -- at last
| at_expr @O~ at_expr -- at last

ltl_expr ::
at_expr -- a boolean expression with at and next
| (ltl_expr)
| ! ltl_expr -- logical not
| ltl_expr & ltl_expr -- logical and
| ltl_expr | ltl_expr -- logical or
| ltl_expr xor ltl_expr -- logical exclusive or
| ltl_expr xnor ltl_expr -- logical NOT exclusive or
| ltl_expr -> ltl_expr -- logical implies
| ltl_expr <-> ltl_expr -- logical equivalence
-- FUTURE
| X ltl_expr -- next state
| G ltl_expr -- globally
| G bound ltl_expr -- bounded globally
| F ltl_expr -- finally
| F bound ltl_expr -- bounded finally
| ltl_expr U ltl_expr -- until
| ltl_expr U bound ltl_expr -- bounded until
| ltl_expr V ltl_expr -- releases
| ltl_expr V bound ltl_expr -- bounded releases
-- PAST
| Y ltl_expr -- previous state
| Z ltl_expr -- not previous state not
| H ltl_expr -- historically
| H bound ltl_expr -- bounded historically
| O ltl_expr -- once
| O bound ltl_expr -- bounded once
| ltl_expr S ltl_expr -- since
| ltl_expr S bound ltl_expr -- bounded since
| ltl_expr T ltl_expr -- triggered
| ltl_expr T bound ltl_expr -- bounded triggered

bound :: [integer_number , integer_number]
| [integer_number , +oo)

Intuitively the semantics of LTL operators is as follows:

Copyright ©2019 by FBK. 41

nuXmv 2.0.0 User Manual

• X p is true at time t if p is true at time t+ 1.

• F p is true at time t if p is true at some time t′ ≥ t.

• F [l,u] p is true at time t if p is true at some time t+ l ≤ t′ ≤ t+ u.

• G p is true at time t if p is true at all times t′ ≥ t.

• G [l,u] p is true at time t if p is true at all times t+ l ≤ t′ ≤ t+ u.

• p U q is true at time t if q is true at some time t′ ≥ t, and for all time t′′ (such that t ≤ t′′ < t′) p is true.

• p U [l,u] q is true at time t if q is true at some time t′ (such that t+ l ≤ t′ ≤ t+ u) and for all time t′′

(such that t ≤ t′′ < t′) p is true.

• p V q is true at time t if q holds at all time steps t′ ≥ t up to and including the time step t′′ where p also
holds. Alternatively, it may be the case that p never holds in which case q must hold in all time steps t′ ≥ t.

• p V [l,u] q is true at time t if q holds at all time steps t′ (such that t+ l ≤ t′ ≤ t+u) up to and including
the time step t′′ where p also holds. Alternatively, it may be the case that p never holds in which case q must
hold in all time steps t′ in [t+ l, t+ u].

• Y p is true at time t > t0 if p holds at time t− 1. Y p is false at time t0.

• Z p is equivalent to Y p with the exception that the expression is true at time t0.

• H p is true at time t if p holds in all previous time steps t′ ≤ t.

• H [l,u] p is true at time t if p holds in all previous time steps t− u ≤ t′ ≤ t− l.

• O p is true at time t if p held in at least one of the previous time steps t′ ≤ t.

• O [l,u] p is true at time t if p held in at least one of the previous time steps t− u ≤ t′ ≤ t− l.

• p S q is true at time t if q held at time t′ ≤ t and p holds in all time steps t′′ such that t′ < t′′ ≤ t.

• p S [l,u] q is true at time t if q held at time t′ (such that t−u ≤ t′ ≤ t− l) and p holds in all time steps
t′′ such that t′ < t′′ ≤ t.

• p T q is true at time t if p held at time t′ ≤ t and q holds in all time steps t′′ such that t′ ≤ t′′ ≤ t.
Alternatively, if p has never been true, then q must hold in all time steps t′′ such that t0 ≤ t′′ ≤ t.

• p T [l,u] q is true at time t if p held at time t′ (such that t−u ≤ t′ ≤ t− l) and q holds in all time steps
t′′ such that t′ ≤ t′′ ≤ t. Alternatively, if p has never been true, then q must hold in all time steps t′′ such
that t− u ≤ t′′ ≤ t− l.

Intuitively the semantics of AT operators is as follows:

• expr @F~ p is the value expr will have the next time p will hold.

• expr @O~ p is the value expr had the last time p held.

An LTL formula is true if it is true at the initial time t0.
In NUXMV, LTL specifications can be analyzed, depending on the fact that the model is finite-state or infinite

state, by means of BDD-based reasoning, by means of SAT-based techniques or for SMT based techniques. In the
case of BDD-based reasoning, NUXMV proceeds according to [CGH97a]. For each LTL specification, a tableau of
the behaviors falsifying the property is constructed, and then synchronously composed with the model. Similarly
to NUSMV, the [CGH97a] approach is fully integrated within NUXMV, and allows full treatment of past temporal
operators. Note that the counterexample is generated in such a way to show that the falsity of a LTL specification
may contain state variables which have been introduced by the tableau construction procedure.

In the case of SAT/SMT-based reasoning, a similar tableau construction is carried out to encode the paths
of limited length, violating the property. NUXMV, similarly to NUSMV, generates a propositional satisfiability
problem, that is then tackled by means of efficient SAT or SMT solvers.

In all cases, the tableau constructions are completely transparent to the user.

Copyright ©2019 by FBK. 42

nuXmv 2.0.0 User Manual

LTL Specifications in TTS

Some additional LTL operators are available for TTS and the semantic of some of the existing ones is updated. In
this context also the following LTL formulas are recognized by NUXMV:

op :: < | <= | = | != | >= | >
at_expr ::

at_expr
| time until ltl_expr op at_expr -- time until
| time since ltl_expr op at_expr -- time since

ltl_expr ::
ltl_expr
-- FUTURE
| X~ ltl_expr -- timed next state
-- PAST
| Y~ ltl_expr -- timed previous state

Where in these cases the at expr used as operand of the comparison operator can contain neither time, nor
time until, nor time since.
In the following the semantic of these new operators and the changes applied to existing ones is provided. In
particular bounds on LTL operators predicate over time and not on the number of discrete transitions. The possible
intervals are:

bound :: [number , +oo) | [0 , number]

where number can be an expression containing constant numbers and frozen variables. This expression must be
of type real.

• X p is true at configuration s if from s there is a discrete transition to a state in which p is true.

• X~ p is true in configuration s at time t if from s there is a time elapse and p holds in the left open interval
(t, t+ ε].

• F [l,+oo) p is true at time t if p is true at some time t+ l ≤ t′.

• G [l,+oo) p is true at time t if p is true at all times t+ l ≤ t′.

• Y p is true at configuration s¬ = s0 if p holds in s′ and there is a discrete transition from s′ to s. Y p is
false in s0.

• Y~ p is true in configuration s at time t > 0 if p holds in the right open interval [t − ε, t). Y~ p is false at
time 0.

• H [l,+oo) p is true at time t if p holds in all previous time steps t′ ≤ t− l.

• O [l,+oo) p is true at time t if p held in at least one of the previous time steps t′ ≤ t− l.

• expr @F~ p is the value expr will have the next time p | X~ p will hold.

• expr @O~ p is the value expr had the last time p | Y~ p held.

• time until p is the time elapse required to reach the next state in which p holds.

• time since p is the time elapsed from the last state in which p held.

Copyright ©2019 by FBK. 43

nuXmv 2.0.0 User Manual

Important Difference Between BDD and SAT/SMT Based LTL Model Checking

If a FSM to be checked is not total (i.e. it has at least a deadlock state) the model checking may return different
results for the same LTL specification depending on the verification engine used. For example, let us consider the
model below.

MODULE main
VAR s : boolean;
TRANS s = TRUE
LTLSPEC G (s = TRUE)

The LTL specification is proved valid by BDD-based model checking but is violated by SAT/SMT-based bounded
model checking. The counter-example found consists of one state s=FALSE.

This difference between the results is caused by the fact that BDD model checking investigates only infinite
paths whereas SAT/SMT-based model checking is able to deal also with finite paths. Apparently infinite paths
cannot ever have s=FALSE as then the transition relation will not hold between the consecutive states in the path.
A finite path consisting of just one state s=FALSE violates the specification G (s = TRUE) and is still consistent
with the FSM as the transition relation is not taken ever and there is not initial condition to violate. Note however
that this state is a deadlock and cannot have consecutive states.

In order to make SAT/SMT-based bound model checking ignore finite paths it is enough to add a fairness
condition to the main module:

JUSTICE TRUE;

Being limited to fair paths, SAT/SMT-based bounded model checking cannot find a finite counter-example and
results of model checking become consistent with BDD-based model checking.

2.5.4 Real Time CTL Specifications and Computations
NUXMV (as well as NUSMV) allows for Real Time CTL specifications [EMSS91]. Similarly to NUSMV, in
NUXMV we assume that each transition takes unit time for execution. RTCTL extends the syntax of CTL path
expressions with the following bounded modalities:

rtctl_expr ::
ctl_expr

| EBF range rtctl_expr
| ABF range rtctl_expr
| EBG range rtctl_expr
| ABG range rtctl_expr
| A [rtctl_expr BU range rtctl_expr]
| E [rtctl_expr BU range rtctl_expr]

range :: integer_number .. integer_number

Given ranges must be non-negative.
Intuitively, the semantics of the RTCTL operators is as follows:

• EBF m..n p requires that there exists a path starting from a state, such that property p holds in a future
time instant i, with m ≤ i ≤ n

• ABF m..n p requires that for all paths starting from a state, property p holds in a future time instant i, with
m ≤ i ≤ n

• EBG m..n p requires that there exists a path starting from a state, such that property p holds in all future
time instants i, with m ≤ i ≤ n

• ABG m..n p requires that for all paths starting from a state, property p holds in all future time instants i,
with m ≤ i ≤ n

• E [p BU m..n q] requires that there exists a path starting from a state, such that property q holds in a
future time instant i, with m ≤ i ≤ n, and property p holds in all future time instants j, with m ≤ j < i

Copyright ©2019 by FBK. 44

nuXmv 2.0.0 User Manual

• A [p BU m..n q], requires that for all paths starting from a state, property q holds in a future time
instant i, with m ≤ i ≤ n, and property p holds in all future time instants j, with m ≤ j < i

Real time CTL specifications can be defined with the following syntax, which extends the syntax for CTL speci-
fications. (keyword ‘SPEC’ is deprecated)

rtctl_specification :: CTLSPEC rtctl_expr [;]
| SPEC rtctl_expr [;]
| CTLSPEC NAME identifier := rtctl_expr [;]
| SPEC NAME identifier := rtctl_expr [;]

With the COMPUTE statement, it is also possible to compute quantitative information on the FSM. In particular, it
is possible to compute the exact bound on the delay between two specified events, expressed as CTL formulas.
The syntax is the following:

compute_specification :: COMPUTE compute_expr [;]
| COMPUTE NAME identifier := compute_expr [;]

where

compute_expr :: MIN [rtctl_expr , rtctl_expr]
| MAX [rtctl_expr , rtctl_expr]

MIN [start , final] returns the length of the shortest path from a state in start to a state in final. For this,
the set of states reachable from start is computed. If at any point, we encounter a state satisfying final, we return
the number of steps taken to reach the state. If a fixed point is reached and no computed states intersect final then
infinity is returned.
MAX [start , final] returns the length of the longest path from a state in start to a state in final. If there
exists an infinite path beginning in a state in start that never reaches a state in final, then infinity is returned. If any
of the initial or final states is empty, then undefined is returned.

It is important to remark here that if the FSM is not total (i.e. it contains deadlock states) COMPUTEmay produce
wrong results. It is possible to check the FSM against deadlock states by calling the command check fsm.

2.5.5 Parameter Synthesis Specifications
In many application domains it is necessary to model and reason about parameterized systems, where parameters
are variables whose value is invariant over time, but is only partially constrained (a.k.a. in NUXMV as frozen
variable Section 2.3.1 [Frozen Variables], page 27). Choosing an appropriate value of the parameters is a widely
spread engineering problem, a form of design space exploration where the parameters can represent different
design or deployment decisions.

NUXMV provides the possibility to specify and then construct the space of parameter valuations that satisfy a
parameterized model checking problem. We focus on universal parameter valuations, that guarantee the satisfac-
tion of a property for all associated execution traces.

The syntax for specifying parameter synthesis propblems is the following:

parameter_synth_problem :: PARSYNTH par_synth_problem [;]

where

par_synth_problem :: identifier := { id_list | ltl_expr synt_opt_funct }
| identifier := { id_list | VALID ltl_expr synth_opts }
| identifier := { id_list | SAT ltl_expr synth_opts }

id_list :: identifier
| id_list , identifier

synth_opts :: /* empty */
| , synth_opts_list

synth_opts_list :: /* empty */

Copyright ©2019 by FBK. 45

nuXmv 2.0.0 User Manual

| synth_opt
| , synth_opts_list , synth_opt

synth_opt :: /* empty */
| MAX (simple_expr)
| MIN (simple_expr)
| MONOPOS
| MONONEG

The identifier is a unique identifier within the model. The id list is the list of parameters to be
synthesized: they must correspond to frozen variable names (Section 2.3.1 [Frozen Variables], page 27). The
ltl expr is the LTL expression for which the parameters have to be computed to guarantee the validity (VALID)
or the satisfaction (SAT). If not specified, the default meaning is VALID. The optional synth opts produc-
tion specifies the problem characteristics such as the optimization (given a function (simple expr)), or the
monotonicity. In particular, MONOPOS assumes that if{p1&¬p2} ∈ Badthen{p1} ∈ Bad, and if{p1&p2} ∈
Goodthen{p1} ∈ Goodand{p2} ∈ Good, and MONONEG assumes that if{p1&¬p2} ∈ Badthen{¬p2} ∈ Bad,
and if{¬p1&¬p2} ∈ Goodthen{¬p1} ∈ Goodand{¬p2} ∈ Good.

2.5.6 PSL Specifications
NUXMV, similarly to NUSMV, allows to specify PSL properties that comply with version 1.01 of PSL Language
Reference Manual [psl03]. PSL specifications are introduced by the keyword “PSLSPEC”. The syntax of this
declaration (as from the PSL parsers distributed by IBM, [PSL]) is:

pslspec_declaration :: PSLSPEC psl_expr [;]
| PSLSPEC NAME identifier := psl_expr [;]

where

psl_expr ::
psl_primary_expr

| psl_unary_expr
| psl_binary_expr
| psl_conditional_expr
| psl_case_expr
| psl_property

The first five classes define the building blocks for psl property and provide means of combining instances of
that class; they are defined as follows:

psl_primary_expr ::
number ;; a numeric constant

| boolean ;; a boolean constant
| word ;; a word constant
| var_id ;; a variable identifier
| { psl_expr , ... , psl_expr }
| { psl_expr "{" psl_expr , ... , "psl_expr" }}
| (psl_expr)

psl_unary_expr ::
+ psl_primary_expr

| - psl_primary_expr
| ! psl_primary_expr
| bool (psl_expr)
| word1 (psl_expr)
| uwconst (psl_expr, psl_expr)
| swconst (psl_expr, psl_expr)
| sizeof (psl_expr)
| toint (psl_expr)
| signed (psl_expr)

Copyright ©2019 by FBK. 46

nuXmv 2.0.0 User Manual

| unsigned (psl_expr)
| extend (psl_expr, psl_primary_expr)
| resize (psl_expr, psl_primary_expr)
| select (psl_expr, psl_expr, psl_expr)

psl_binary_expr ::
psl_expr + psl_expr

| psl_expr union psl_expr
| psl_expr in psl_expr
| psl_expr - psl_expr
| psl_expr * psl_expr
| psl_expr / psl_expr
| psl_expr % psl_expr
| psl_expr == psl_expr
| psl_expr != psl_expr
| psl_expr < psl_expr
| psl_expr <= psl_expr
| psl_expr > psl_expr
| psl_expr >= psl_expr
| psl_expr & psl_expr
| psl_expr | psl_expr
| psl_expr xor psl_expr
| psl_expr xnor psl_expr
| psl_expr << psl_expr
| psl_expr >> psl_expr
| psl_expr :: psl_expr

psl_conditional_expr ::
psl_expr ? psl_expr : psl_expr

psl_case_expr ::
case

psl_expr : psl_expr ;
...
psl_expr : psl_expr ;

endcase

Among the subclasses of psl expr we depict the class psl bexpr that will be used in the following to identify
purely boolean, i.e. not temporal, expressions. The class of PSL properties psl property is defined as follows:

psl_property ::
replicator psl_expr ;; a replicated property

| FL_property abort psl_bexpr
| psl_expr <-> psl_expr
| psl_expr -> psl_expr
| FL_property
| OBE_property

replicator ::
forall var_id [index_range] in value_set :

index_range ::
[range]

range ::
low_bound : high_bound

low_bound ::
number

| identifier
high_bound ::

number
| identifier
| inf ;; inifite high bound

value_set ::
{ value_range , ... , value_range }

Copyright ©2019 by FBK. 47

nuXmv 2.0.0 User Manual

| boolean
value_range ::

psl_expr
| range

The instances of FL property are temporal properties built using LTL operators and SEREs operators, and are
defined as follows:

FL_property ::
;; PRIMITIVE LTL OPERATORS
X FL_property

| X! FL_property
| F FL_property
| G FL_property
| [FL_property U FL_property]
| [FL_property W FL_property]
;; SIMPLE TEMPORAL OPERATORS
| always FL_property
| never FL_property
| next FL_property
| next! FL_property
| eventually! FL_property
| FL_property until! FL_property
| FL_property until FL_property
| FL_property until!_ FL_property
| FL_property until_ FL_property
| FL_property before! FL_property
| FL_property before FL_property
| FL_property before!_ FL_property
| FL_property before_ FL_property
;; EXTENDED NEXT OPERATORS
| X [number] (FL_property)
| X! [number] (FL_property)
| next [number] (FL_property)
| next! [number] (FL_property)
;;
| next_a [range] (FL_property)
| next_a! [range] (FL_property)
| next_e [range] (FL_property)
| next_e! [range] (FL_property)
;;
| next_event! (psl_bexpr) (FL_property)
| next_event (psl_bexpr) (FL_property)
| next_event! (psl_bexpr) [number] (FL_property)
| next_event (psl_bexpr) [number] (FL_property)
;;
| next_event_a! (psl_bexpr) [psl_expr] (FL_property)
| next_event_a (psl_bexpr) [psl_expr] (FL_property)
| next_event_e! (psl_bexpr) [psl_expr] (FL_property)
| next_event_e (psl_bexpr) [psl_expr] (FL_property)
;; OPERATORS ON SEREs
| sequence (FL_property)
| sequence |-> sequence [!]
| sequence |=> sequence [!]
;;
| always sequence
| G sequence
| never sequence
| eventually! sequence
;;

Copyright ©2019 by FBK. 48

nuXmv 2.0.0 User Manual

| within! (sequence_or_psl_bexpr , psl_bexpr) sequence
| within (sequence_or_psl_bexpr , psl_bexpr) sequence
| within!_ (sequence_or_psl_bexpr , psl_bexpr) sequence
| within_ (sequence_or_psl_bexpr , psl_bexpr) sequence
;;
| whilenot! (psl_bexpr) sequence
| whilenot (psl_bexpr) sequence
| whilenot!_ (psl_bexpr) sequence
| whilenot_ (psl_bexpr) sequence

sequence_or_psl_bexpr ::
sequence

| psl_bexpr

Sequences, i.e. istances of class sequence, are defined as follows:

sequence ::
{ SERE }

SERE ::
sequence

| psl_bexpr
;; COMPOSITION OPERATORS
| SERE ; SERE
| SERE : SERE
| SERE & SERE
| SERE && SERE
| SERE | SERE
;; RegExp QUALIFIERS
| SERE [* [count]]
| [* [count]]
| SERE [+]
| [+]
;;
| psl_bexpr [= count]
| psl_bexpr [-> count]

count ::
number

| range

Istances of OBE property are CTL properties in the PSL style and are defined as follows:

OBE_property ::
AX OBE_property

| AG OBE_property
| AF OBE_property
| A [OBE_property U OBE_property]
| EX OBE_property
| EG OBE_property
| EF OBE_property
| E [OBE_property U OBE_property]

The NUXMV parser allows to input any specification based on the grammar above, but currently, verification of
PSL specifications is supported only for the OBE subset, and for a subset of PSL for which it is possible to define
a translation into LTL. For the specifications that belong to these subsets, it is possible to apply all the verification
techniques that can be applied to LTL and CTL Specifications.

Note: Full support for PSL will be integrated in forthcoming releases of NUXMV.

2.6 Variable Order Input
As it is the case in NUSMV, NUXMV allows to specify the order in which variables should appear in the generated
BDDs. The file which gives the desired order can be read in using the -i option in batch mode or by setting the

Copyright ©2019 by FBK. 49

nuXmv 2.0.0 User Manual

input order file environment variable in interactive mode. 10

2.6.1 Input File Syntax
The syntax for input files describing the desired variable ordering is as follows, where the file can be considered
as a list of variable names, each of which must be on a separate line:

vars_list :: EMPTY
| var_list_item vars_list

var_list_item :: complex_identifier
| complex_identifier . integer_number

Where EMPTY means parsing nothing.
This grammar allows for parsing a list of variable names of the following forms:

Complete_Var_Name -- to specify an ordinary variable
Complete_Var_Name[index] -- to specify an array variable element
Complete_Var_Name.NUMBER -- to specify a specific bit of a

-- scalar variable

where Complete Var Name is just the name of the variable if it appears in the module MAIN, otherwise it has the
module name(s) prepended to the start, for example:

mod1.mod2...modN.varname

where varname is a variable in modN, and modN.varname is a variable in modN-1, and so on. Note that the
module name main is implicitely prepended to every variable name and therefore must not be included in their
declarations.
Any variable which appears in the model file, but not the ordering file is placed after all the others in the ordering.
Variables which appear in the ordering file but not the model file are ignored. Similarly to NUSMV, in both cases
NUXMV displays a warning message stating these actions.

Comments can be included by using the same syntax as regular NUSMV files. That is, by starting the line
with -- or by entering text between limiters /-- and --/.

2.6.2 Scalar Variables
A variable, which has a finite range of values that it can take, is encoded as a set of boolean variables (i.e. bits).
These boolean variables represent the binary equivalents of all the possible values for the scalar variable. Thus, a
scalar variable that can take values from 0 to 7 would require three boolean variables to represent it.

It is possible not only to declare the position of a scalar variable in the ordering file, but each of the boolean
variables which represent it.
If only the scalar variable itself is named then all the boolean variables which are actually used to encode it are
grouped together in the BDD package.
Variables which are grouped together will always remain next to each other in the BDD package and in the same
order. When dynamic variable re-ordering is carried out, the group of variables are treated as one entity and moved
as such.
If a scalar variable is omitted from the ordering file then it will be added at the end of the variable order and the
specific-bit variables that represent it will be grouped together. However, if any specific-bit variables have been
declared in the ordering file (see below) then these will not be grouped with the remaining ones.
It is also possible to specify the location of specific bit variables anywhere in the ordering. This is achieved by first
specifying the scalar variable name in the desired location, then simply specifying Complete Var Name.i at
the position where you want that bit variable to appear:

10Note that if the ordering is not provided by a user then NUXMV decides by itself how to order the variables. Two shell variables
bdd static order heuristics (see the NUSMV user manual [CCCJ+10] for further information) and vars order type allow
to control the ordering creation.

Copyright ©2019 by FBK. 50

nuXmv 2.0.0 User Manual

...
Complete Var Name
...
Complete Var Name.i
...

The result of doing this is that the variable representing the ith bit is located in a different position to the re-
mainder of the variables representing the rest of the bits. The specific-bit variables varname.0, ..., varname.i-1,
varname.i+1, ..., varname.N are grouped together as before.

If any one bit occurs before the variable it belongs to, the remaining specific-bit variables are not grouped
together:

...
Complete Var Name.i
...
Complete Var Name
...

The variable representing the ith bit is located at the position given in the variable ordering and the remainder are
located where the scalar variable name is declared. In this case, the remaining bit variables will not be grouped
together.
This is just a short-hand way of writing each individual specific-bit variable in the ordering file. The following are
equivalent:

... ...
Complete Var Name.0 Complete Var Name.0
Complete Var Name.1 Complete Var Name
... ...

Complete Var Name.N-1
...

where the scalar variable Complete Var Name requires N boolean variables to encode all the possible values that
it may take. It is still possible to then specify other specific-bit variables at later points in the ordering file as before.

2.6.3 Array Variables
When declaring array variables in the ordering file, each individual element must be specified separately. It is not
permitted to specify just the name of the array. The reason for this is that the actual definition of an array in the
model file is essentially a shorthand method of defining a list of variables that all have the same type. Nothing is
gained by declaring it as an array over declaring each of the elements individually, and there is no difference in
terms of the internal representation of the variables.

2.7 Clusters Ordering
When NUXMV builds a clusterized BDD-based FSM during model construction (as it is the case for NUSMV),
an initial simple clusters list is roughly constructed by iterating through a list of variables, and by constructing the
clusters by picking the transition relation associated to each variable in the list. Later, the clusters list will be re-
fined and improved by applying the clustering alghorithm that the user previoulsy selected (for further information,
see partitioning methods in the NUSMV user manual [CCCJ+10]).

NUXMV, similar to NUSMV, allows to specify an ordering for the initial list of variables that is used to build
the clusters. The option trans order file can be used to specify a file containing a variable ordering. This
feature is inherited directly from NUSMV (for further information see the NUSMV user manual [CCCJ+10]).

Grammar of the clusters ordering file in NUXMV is the same of the one in the NUSMV user man-
ual [CCCJ+10].

Copyright ©2019 by FBK. 51

nuXmv 2.0.0 User Manual

Chapter 3

Running NUXMV interactively

NUXMV inherits from NUSMV the interactive shell. In this mode NUXMV, like NUSMV, enters a read-eval-print
loop. The user can activate the various NUXMV computation steps as system commands with different options.
These steps can therefore be invoked separately, possibly undone or repeated under different modalities. As for
NUSMV, the interactive shell of NUXMV is activated from the system prompt as follows (’nuXmv >’ is the
default NUXMV shell prompt):

system prompt> nuXmv -int <RET>
nuXmv >

When running interactively, NUXMV first tries to read and execute commands from an initialization file if such
file can be found and is readable unless -s is passed on the command line.
Search is done in this order:

1. File master.nuxmvrc is looked for in directory defined in environment variable
NUXMV LIBRARY PATH or in default library path (e.g. /usr/local/share/nusmv under
GNU/Linux) if no such variable is defined.

2. If no such file exists, file .nuxmvrc is looked for in user’s home directory.

3. If no such file exists, .nuxmvrc is looked for in current directory.

Tip: To see which file are searched for and the search paths we recommend to use the command line option -h
and to look at the description for option -s.

Commands in the initialization file (if any) are executed consecutively. When initialization phase is completed
the NUXMV shell is displayed and the system is now ready to execute user commands.

Similar to NUSMV, a NUXMV command is a sequence of words. The first word specifies the command to
be executed. The remaining words are arguments to the invoked command. Commands separated by a ‘;’ are
executed sequentially; the NUXMV shell waits for each command to terminate in turn. The behavior of commands
can depend on environment variables, similar to “csh” environment variables.

It is also possible to make NUXMV read and execute a sequence of commands from a file, through the command
line option -source:

system prompt> nuXmv -source cmd file <RET>

-source cmd-file Starts the interactive shell and then executes NUXMV commands
from file cmd-file. If an error occurs during a command execution,
commands that follow will not be executed. See also the variable
on failure script quits. The option -source implies -int.

Copyright ©2019 by FBK. 52

nuXmv 2.0.0 User Manual

Command sequences in NUXMV (similar to NUSMV) must obey the (partial) order specified in Figure 3.1
(at page 54) for untimed systems. While for timed systems (-time command line flag specified), the command
sequences must obey the (partial) order depicted in Figure 3.2 (at page 55). From the picture, it is clear that, for
instance, it is not possible to evaluate CTL/LTL or invariant properties before the model is built. In Figure 3.1
and Figure 3.2 a star (*) is used as prefix to denote new commands provided by NUXMV, and not available in
NUSMV. Furthermore, loop backs are not represented to ease the reading. Nevertheless, the flow should be still
well comprehensible. For a description of the commands to analyze untimed models see chapter 5 (page 116).
While the description of the commands to analyze timed models can found in chapter 6 (page 150).

A number of commands and environment variables, like those dealing with file names, accept arbitrary strings.
There are a few reserved characters which must be escaped if they are to be used literally in such situations. See
the section describing the history command, on page 109, for more information.

The verbosity of NUXMV is controlled by the verbose level environment variable.

verbose level Environment Variable

Controls the verbosity of the system. Possible values are integers from 0 (no messages) to 4 (full messages).
The default value is 0.

NUXMV provides to the user all the commands that NUSMV provides. Moreover, it extends the set of com-
mands with new ones. In Chapter 4 we describe all the NUSMV commands, while in Chapter 5 we describe all
the new NUXMV commands. All the commands are organizez for functionality.

Command Annotations
All the NUSMV commands operates over finite domains. In the following we annotated each new commands with
a flag stating whether the command is applicable only to finite-state domain, or if it can be applied to infinite-state
domains (which include finite domains). We use the folloiwng annotations:

• [F]: the command can be applied only to finite-state domains.

• [I]: the command can be applied only to infinite-state domains, which include finite-state ones.

• [F,I]: the command provides the user with command line options to invoke the finite-state or the infinite-state
version (that uses SMT) for the underlying algorithm.

Copyright ©2019 by FBK. 53

nuXmv 2.0.0 User Manual

Figure 3.1: The dependency among NUXMV commands.

Copyright ©2019 by FBK. 54

nuXmv 2.0.0 User Manual

*go_time

read_model

flatten_hierarchy
add_property

hrc_dump_model

show_plugins

show_property

show_traces

show_vars

write_flat_model

reset*

read_trace

! <shell-command>

alias

echo

help

history

print_usage

quit

set

source

time

unalias

unset

usage

which

build_flat_model

*time_setup

*timed_check_invar

*timed_check_ltlspec

*timed_pick_state *timed_simulate

execute_traces

execute_partial_traces

write_flat_model

*write_untimed_model

Figure 3.2: The dependency among NUXMV commands for timed models.

Copyright ©2019 by FBK. 55

nuXmv 2.0.0 User Manual

Chapter 4

Commands from NUSMV

In the following we present the commands inherited from NUSMV. We also describe the environment variables
that may affect the behavior of the commands. All the commands have been classified in different categories.
Tip: Each command has the command line option -h that provides the short description for the command itself.

4.1 Model Reading and Building
The following commands allow for the parsing and compilation of the model in order to enable all the verification
algorithms.

read model - Reads a NuSMV file into NuSMV. Command

read model [-h] [-i model-file]

Reads a NUXMV file. If the -i option is not specified, it reads from the file specified in the environment
variable input file.

Command Options:

-i model-file Sets the environment variable input file to model-file, and reads
the model from the specified file.

input file Environment Variable

Stores the name of the input file containing the model. It can be set by the “set” command or by the command
line option ‘-i’. There is no default value.

pp list Environment Variable

Stores the list of pre-processors to be run on the input file before it is parsed by NUXMV. The pre-processors
are executed in the order specified by this variable. The argument must either be the empty string (specifying
that no pre-processors are to be run on the input file), one single pre-processor name or a space seperated list
of pre-processor names inside double quotes. Any invalid names are ignored. The default is none.

flatten hierarchy - Flattens the hierarchy of modules Command

flatten hierarchy [-h] [-d] [-e]

This command is responsible of the instantiation of modules and processes. The instantiation is performed by
substituting the actual parameters for the formal parameters, and then by prefixing the result via the instance
name.

Copyright ©2019 by FBK. 56

nuXmv 2.0.0 User Manual

Command Options:

-d Delays the construction of vars constraints until needed
-e Expands the word-array expressions into individual elements expressions

disable syntactic checks Environment Variable

Enables or disables the syntactic checks that are performed by the “flatten hierarchy” command. Warning: If
the model is not well-formed, NUXMV may result in unpredictable results, use this option at your own risk.

keep single value vars Environment Variable

Enables or disables the conversion of variables that can assume only one single possible value into constant
DEFINEs.

backward compatibility Environment Variable

As in NUSMV, this variable enables/disables type checking and other features provided by NUXMV. If set
to 1 then the type checking is turned off, and NUXMV behaves as the old versions of NUSMV (for the pure
boolean case) w.r.t. type checking and other features like writing of flattened and booleanized SMV files and
promotion of boolean constants to their integer counterpart. If set to 0 then the type checking is turned on,
and whenever a type error is encountered while compiling a NUXMV program the user is informed and the
execution is stopped.

Since NUSMV 2.5.1, backward compatibility mode introduces a porting feature from old models which use
constant 1 as case conditions, instead of forcing the use of TRUE.

The option by default it set to 0.

type checking warning on Environment Variable

Enables notification of warning messages generated by the type checking. If set to 0, then messages are
disregarded, otherwise if set to 1 they are notified to the user. As default it is set to 1.

show vars - Shows model’s symbolic variables and defines with their types Command

show vars [-h] [-s] [-f] [-i] [-t | -V | -D] [-v] [-m | -o output-file]

Prints a summary of the variables and defines declared in the input file. Moreover, it prints also the list of
symbolic input, frozen and state variables of the model with their range of values (as defined in the input file)
if the proper command option is specified.

By default, if no type specifiers (-s, -f, -i) are used, all variable types will be printed. When using one or
more type specifiers (e.g. -s), only variables belonging to selected types will be printed.

Command Options:

-s Prints only state variables.
-f Prints only frozen variables.
-i Prints only input variables.
-t Prints only the number of variables (among selected kinds), grouped by type.

This option is incompatible with -V or -D

Copyright ©2019 by FBK. 57

nuXmv 2.0.0 User Manual

-V Prints only the list of variables with their types (among selected kinds), with
no summary information. This option is incompatible with -t or -D

-D Prints only the list of defines with their types, with no summary information.
This option is incompatible with -t or -V

-v Prints verbosely. Scalar variable’s values are not truncated if too long for
printing.

-m Pipes the output to the program specified by the PAGER shell variable if
defined, else through the UNIX command “more”.

-o output-file Writes the output generated by the command to output-file.

show dependencies - Shows the dependencies for the given expression Command

show dependencies [-h] [-k bound] -e expression

Prints the set of variables that are in the dependency set of the given expression. If the bound is specified
using the -k argument, then the computation of the dependencies is done until the bound has been reached.
If not specified, the computation is performed until no new dependencies are found.

Command Options:

-h Shows the command usage
-k bound Sets the bound limit for the dependencies computation
-e expr The expression on which the dependencies are computed

encode variables - Builds the BDD variables necessary to compile the model
into a BDD.

Command

encode variables [-h] [-i order-file]

Generates the boolean BDD variables and the ADD needed to encode propositionally the (symbolic) vari-
ables declared in the model. The variables are created as default in the order in which they appear in a depth
first traversal of the hierarchy.
The input order file can be partial and can contain variables not declared in the model. Variables not declared
in the model are simply discarded. Variables declared in the model which are not listed in the ordering input
file will be created and appended at the end of the given ordering list, according to the default ordering.

Command Options:

-i order-file Sets the environment variable input order file to order-file, and
reads the variable ordering to be used from file order-file. This can
be combined with the write order command. The variable ordering is
written to a file, which can be inspected and reordered by the user, and then
read back in.

input order file Environment Variable

Indicates the file name containing the variable ordering to be used in building the model by the
‘encode variables’ command. A value for this variable can also be provided with command line
option -i. There is no default value.

write order dumps bits Environment Variable

Copyright ©2019 by FBK. 58

nuXmv 2.0.0 User Manual

Changes the behaviour of the command write order.

When this variable is set, write order will dump the bits constituting the boolean encoding of each scalar
variable, instead of the scalar variable itself. This helps to work at bits level in the variable ordering file. See
the command write order for further information. The default value is 1.

write order - Writes variable order to file. Command

write order [-h] [-b] [(-o | -f) order-file]

Writes the current order of BDD variables in the file specified via the -o option. If no option is specified the
environment variable output order file will be considered. If the variable output order file is
unset (or set to an empty value) then standard output will be used.

By default, the bits constituting the scalar variables encoding are not dumped. When a variable bit should be
dumped, the scalar variable which the bit belongs to is dumped instead if not previously dumped. The result
is a variable ordering containing only scalar and boolean model variables.

To dump single bits instead of the corresponding scalar variables, either the option -b can be specified, or
the environment variable write order dumps bits must be previously set.

When the boolean variable dumping is enabled, the single bits will occur within the resulting ordering file in
the same position that they occur at BDD level.

Command Options:

-b Dumps bits of scalar variables instead of the single scalar variables. See also
the variable write order dumps bits.

-o order-file Sets the environment variable output order file to order-file
and then dumps the ordering list into that file.

-f order-file Alias for the -o option. Supplied for backward compatibility.

output order file Environment Variable

The file where the current variable ordering has to be written. A value for this variable can also be provided
with command line option -o. The default value is ‘temp.ord’.

vars order type Environment Variable

Controls the manner variables are ordered by default, when a variable ordering is not specified by a
user and not computed statically by heuristics (see variables input order file on page 58 and
bdd static order heuristics on page 60).

The individual bits of variables may or may not be interleaved. When bits interleaving is not used then bits
belonging to one variable are grouped together in the ordering. Otherwise, the bits interleaving is applied
and all higher bits of all variables are ordered before all the lower bits, i.e. N-th bits of all variables go before
(N-1)th bits. The exception is boolean variables which are ordered before variables of any other type though
boolean variables consist of only 0-th bit.

The value of vars order type may be:

• inputs before. Input variables are forced to be ordered before state and frozen variables (default). No
bits interleaving is done.

• inputs after. Input variables are forced to be ordered after state and frozen variables. No bits inter-
leaving is done.

• topological. Input, state and frozen variables are ordered as they are declared in the input smv file. No
bits interleaving is done.

Copyright ©2019 by FBK. 59

nuXmv 2.0.0 User Manual

• inputs before bi. Bits are interleaved and in every group of N-th bits input variables are forced to be
ordered before state and frozen variables. This is the default value.

• inputs after bi. Bits are interleaved and in every group of N-th bits input variables are forced to be
ordered after state and frozen variables.

• topological bi. Bits are interleaved and in every group of N-th bits input, state and frozen variables
are ordered as they are declared in the input smv file.

• lexicographic. This is deprecated value. topological has to be used instead.

bdd static order heuristics Environment Variable

When a variable ordering is not specified (see variable input order file on page 58) NUXMV can try
to guess a good ordering by analyzing the input model.

Possible values are:

• none No heuristics are applied.

• basic This heuristics creates some initial ordering and then moves scalar and word variables in this
ordering to form groups. Groups go one after another and every group contains variables which in-
teract with each other in the model. For example, having variables a,b,c,d,e,f and a single model
constraint TRANS next(a)=b+1 -> (next(c)=d/e & next(f)!=a) will results in 2 groups of
variables {a,b,f} and {c,d,e}.
Shell variable vars order type (page 59) provides additional control over the heuristics. In partic-
ular, it allows to put input/state variables in the initial ordering at the begin, the end or in topological
order. Moreover, if the value of this variable is ending in bi then in very individual group the bits of
variables are additionally interleaved.
Note that variable groups created by the heuristics has nothing to do with BDD package groups which
disallow dynamic reordering of variables in one group. After the heuristics is applied the dynamic
reordering may move any bit of any variable at any position.

build model - Compiles the flattened hierarchy into a BDD Command

build model [-h] [-f] [-m Method]

Compiles the flattened hierarchy into a BDD (initial states, invariants, and transition relation) using the
method specified in the environment variable partition method for building the transition relation.

Command Options:

-m Method Sets the environment variable partition method to the value
Method, and then builds the transition relation. Available methods are
Monolithic, Threshold and Iwls95CP.

-f Forces model construction. By default, only one partition method is allowed.
This option allows to overcome this default, and to build the transition rela-
tion with different partitioning methods.

partition method Environment Variable

The method to be used in building the transition relation, and to compute images and preimages. Possible
values are:

• Monolithic. No partitioning at all.

Copyright ©2019 by FBK. 60

nuXmv 2.0.0 User Manual

• Threshold. Conjunctive partitioning, with a simple threshold heuristic. Assignments are collected in a
single cluster until its size grows over the value specified in the variable conj part threshold. It
is possible (default) to use affinity clustering to improve model checking performance. See affinity
variable.

• Iwls95CP. Conjunctive partitioning, with clusters generated and ordered according to the heuristic de-
scribed in [RAP+95]. Works in conjunction with the variables image cluster size, image W1,
image W2, image W3, image W4. It is possible (default) to use affinity clustering to improve model
checking performance. See affinity variable. It is also possible to avoid (default) preordering of
clusters (see [RAP+95]) by setting the iwls95preorder variable appropriately.

conj part threshold Environment Variable

The limit of the size of clusters (expressed as number of BDD nodes) in conjunctive partitioning. The default
value is 1000 BDD nodes.

affinity Environment Variable

This variable controls whether to enables the affinity clustering heuristic as described in [MHS00]. Possible
values are 0 or 1: the default value is 1.

trans order file Environment Variable

Reads the a variables list from file tv file, to be used when clustering the transition relation. This feature has
been provided by Wendy Johnston, University of Queensland. The results of Johnston’s research have been
presented at FM 2006 in Hamilton, Canada. See [WJKWLvdBR06].

image cluster size Environment Variable

One of the parameters to configure the behaviour of the Iwls95CP partitioning algorithm.
image cluster size is used as threshold value for the clusters. The default value is 1000 BDD nodes.

image W{1,2,3,4} Environment Variable

The other parameters for the Iwls95CP partitioning algorithm. These attribute different weights to the differ-
ent factors in the algorithm. The default values are 6, 1, 1, 6 respectively. (For a detailed description, please
refer to [RAP+95].)

iwls95preorder Environment Variable

Enables cluster preordering following heuristic described in [RAP+95], possible values are 0 or 1. The
default value is 0. Preordering can be very slow.

image verbosity Environment Variable

Sets the verbosity for the image method Iwls95CP, possible values are 0 or 1. The default value is 0.

print iwls95options - Prints the Iwls95 Options. Command

print iwls95options [-h]

Copyright ©2019 by FBK. 61

nuXmv 2.0.0 User Manual

This command prints out the configuration parameters of the IWLS95 clustering algorithm, i.e.
image verbosity, image cluster size and image W{1,2,3,4}.

go - Initializes the system for the verification. Command

go [-h] [-f]

This command initializes the system for verification. It is equivalent to the
command sequence read model, flatten hierarchy, encode variables,
build flat model, build model.

If some commands have already been executed, then only the remaining ones will be invoked.

Command Options:

-f Forces model construction even when Cone Of Influence is enabled.

get internal status - Prints out the internal status of the system. Command

get internal status [-h]

Prints out the internal status of the system. i.e.

• -1: read model has not yet been executed or an error occurred during its execution.

• 0: flatten hierarchy has not yet been executed or an error occurred during its execution.

• 1: encode variables has not yet been executed or an error occurred during its execution.

• 2: build model has not yet been executed or an error occurred during its execution.

process model - Performs the batch steps and then returns control to the inter-
active shell.

Command

process model [-h] [-f] [-r] [-i model-file] [-m Method]

Reads the model, compiles it into BDD and performs the model checking of all the specification contained
in it. If the environment variable forward search has been set before, then the set of reachable states is
computed. If the option -r is specified, the reordering of variables is performed and a dump of the variable
ordering is performed accordingly. This command simulates the batch behavior of NUXMV and then returns
the control to the interactive shell.

Command Options:

-f Forces the model construction even when Cone Of Influence is enabled.
-r Forces a variable reordering at the end of the computation, and dumps the

new variables ordering to the default ordering file. This options acts like the
command line option -reorder.

-i model-file Sets the environment variable input file to file model-file, and
reads the model from file model-file.

-m Method Sets the environment variable partition method to Method and uses it
as partitioning method.

build flat model - Compiles the flattened hierarchy into a Scalar FSM Command

Copyright ©2019 by FBK. 62

nuXmv 2.0.0 User Manual

build flat model [-h]

Compiles the flattened hierarchy into SEXP (initial states, invariants, and transition relation).

build boolean model - Compiles the flattened hierarchy into boolean Scalar
FSM

Command

build boolean model [-h] [-f]

Compiles the flattened hierarchy into boolean SEXP (initial states, invariants, and transition relation).

Command Options:

-f Forces the boolean model construction.

write flat model - Writes a flat model to a file Command

write flat model [-h] [-A] [-o filename]

Writes the currently loaded SMV model in the specified file, after having flattened it. Processes are elimi-
nated and a corresponding equivalent model is printed out.

If no file is specified, the file specified via the environment variable output flatten model file is
used if any, otherwise standard output is used.

Command Options:

-o filename Attempts to write the flat SMV model in filename
-A Writes the flat SMV model using a renaming map to “anonimize” the model.

All the symbols except numerical constanst will be renamed.

output flatten model file Environment Variable

The file where the flattened model has to be written. The default value is ‘stdout’.

daggifier enabled Environment Variable

Determines whether the expression daggifier in the model dumping features is enabled or not. The default is
enabled.

daggifier depth threshold Environment Variable

Sets the minimum threshold for expressions depth to be daggified.

daggifier counter threshold Environment Variable

Sets the minimum threshold for expressions count to be daggified. (i.e. expression must show at least
Number time to be daggified

daggifier statistics Environment Variable

Prints daggifier statistics after model dumping.

Copyright ©2019 by FBK. 63

nuXmv 2.0.0 User Manual

write boolean model - Writes a flat and boolean model to a file Command

write boolean model [-h] [-o filename]

Writes the currently loaded NUXMV model in the specified file, after having flattened and booleanized it.
Processes are eliminated and a corresponding equivalent model is printed out.

If no file is specified, the file specified via the environment variable output boolean model file is
used if any, otherwise standard output is used.

Command Options:

-o filename Attempts to write the flat and boolean NUXMV model in filename

In NUXMV scalar variables are dumped as DEFINEs whose body is their boolean encoding.

This allows the user to still express and see parts of the generated boolean model in terms of the original
model’s scalar variables names and values, and still keeping the generated model purely boolean.

Also, symbolic constants are dumped within a CONSTANTS statement to declare the values of the original
scalar variables’ for future reading of the generated file.

When NUXMV detects that there were triggered one or more dynamic reorderings in the BDD en-
gine, the command write boolean model also dumps the current variables ordering, if the option
output order file is set.

The dumped variables ordering will contain single bits or scalar variables depending on the current value
of the option write order dumps bits. See command write order for further information about
variables ordering.

output boolean model file Environment Variable

The file where the flattened and booleanized model has to be written. The default value is ‘stdout’.

dump fsm - Dumps (in DOT format) selected parts of the bdd fsm, with optional
expression

Command

dump fsm [-h] -o <fname> [-i] [-I] [-t] [-f] [-r] [-e <expr>]

Dumps selected parts of the bdd fsm, with optional expression, in DOT format. At least one among options
[iIte] must be specified.

Command Options:

-o fname Dumps to the specified file name.
-i Dumps the initial states of the FSM, among with other selected outputs.
-I Dumps the invariant states of the FSM, among with other selected outputs.
-t Dumps the (monolithic) transition relation of the FSM, among with other

selected outputs.
-F Dumps the (monolithic) fair states of the FSM, among with other selected

outputs.
-r Dumps the (monolithic) reachable states of the FSM, among with other se-

lected outputs.

Copyright ©2019 by FBK. 64

nuXmv 2.0.0 User Manual

-e expr Dumps the specified expression, among with other selected outputs (see also
command dump expr).

output word format Environment Variable

This variable sets in which base unsigned word[•] and signed word[•] constants are outputted (during
traces, counterexamples, etc, printing). Possible values are 2, 8, 10 and 16. Note that if a part of an input file
is outputted (for example, if a specification expression is outputted) then the unsigned word[•] and signed
word[•] constants remain in same format as they were written in the input file.

4.2 Commands for Checking Specifications
The following commands allow for the BDD-based model checking of a NUXMV model. These commands can
be used only for NUXMV models that do not contain Real or Integers.

compute reachable - Computes the set of reachable states Command

compute reachable [-h] [-k number] [-t seconds]

Computes the set of reachable states. The result is then used to simplify image and preimage computations.
This can result in improved performances for models with sparse state spaces. Sometimes the execution
of this command can take much time because the computation of reachable states may be very expensive.
Use the -k option to limit the number of forward step to perform. If the reachable states has been already
computed the command returns immediately since there is nothing more to compute.

Command Options:

-k number If specified, limits the computation of reachable states to perform number
steps forward starting from the last computed frontier. This means that you
can expand the computed reachable states incrementally using this option.

-t seconds If specified, forces the computation of reachable states to end after “seconds”
seconds. This limit could not be precise since the if the computation of a step
is running when the limit occurs, the computation is not interrupted until the
end of the step

print reachable states - Prints out the number of reachable states Command

print reachable states [-h] [-v] [-d] [-f] [-o filename]

Prints the number of reachable states of the given model. In verbose mode, prints also the list of all reachable
states, if they are less than 216. The reachable states are computed if needed.

Command Options:

-v Prints the list of reachable states
-d Prints the list of reachable states with defines (Requires -v)
-f Prints the formula representing the reachable states
-o filename Prints the result on the specified filename instead of on standard output

check fsm - Checks the transition relation for totality. Command

Copyright ©2019 by FBK. 65

nuXmv 2.0.0 User Manual

check fsm [-h] [-m | -o output-file]

Checks if the transition relation is total. If the transition relation is not total then a potential deadlock state is
shown.

Command Options:

-m Pipes the output generated by the command to the program specified by the
PAGER shell variable if defined, else through the UNIX command “more”.

-o output-file Writes the output generated by the command to the file output-file.

At the beginning reachable states are computed in order to guarantee that deadlock states are actually reach-
able.

check fsm Environment Variable

Controls the activation of the totality check of the transition relation during the
process model call. Possible values are 0 or 1. Default value is 0.

print fsm stats - Prints out information about the fsm and clustering. Command

print fsm stats [-h] | [-m] | [-p] | [-o output-file]

This command prints out information regarding the fsm and each cluster. In particular for each cluster it
prints out the cluster number, the size of the cluster (in BDD nodes), the variables occurring in it, the size of
the cube that has to be quantified out relative to the cluster and the variables to be quantified out.

Also the command can print all the normalized predicates the FMS consists of. A normalized predicate is
a boolean expression which does not have other boolean sub-expressions. For example, expression (b<0 ?

a/b : 0) = c is normalized into (b<0 ? a/b=c : 0=c) which has 3 normalized predicates inside:
b<0, a/b=c, 0=c.

Command Options:

-h Prints the command usage.
-m Pipes the output generated by the command to the program specified by the

PAGER shell variable if defined, else through the UNIX command “more”.
-p Prints out the normalized predicates the FSM consists of. Expressions in

properties are ignored.
-o output-file Writes the output generated by the command to the file output-file.

print fair states - Prints out the number of fair states Command

print fair states [-h] [-v]

Prints the number of fair states of the given model. In verbose mode, prints also the list of all fair states, if
they are less than 216.

print fair transitions - Prints out the number of fair transitions, and optionally
list them

Command

print fair transitions [-h] [-v [-f format] [-o out fname]]

Copyright ©2019 by FBK. 66

nuXmv 2.0.0 User Manual

Prints the number of fair transitions of the given model. In verbose mode, prints also the list of all fair
transitions, with a limit of 216. The transitions are displayed as state-input-next triples, in three possible
formats: smv (default), dot and csv. Also, each transition is tagged with a current state ID and next state ID.

check ctlspec - Performs fair CTL model checking. Command

check ctlspec [-h] [-m | -o output-file] [-n number | -p
"ctl-expr [IN context]" | -P "name"]

Performs fair CTL model checking.

A ctl-expr to be checked can be specified at command line using option -p. Alternatively, option -n
can be used for checking a particular formula in the property database. If neither -n nor -p nor -P are used,
all the SPEC formulas in the database are checked.
See variable use coi size sorting for changing properties verification order.

Command Options:

-m Pipes the output generated by the command in processing SPEC formulas to
the program specified by the PAGER shell variable if defined, else through
the UNIX command “more”.

-o output-file Writes the output generated by the command in processing SPEC formulas
to the file output-file.

-p "ctl-expr [IN
context]"

A CTL formula to be checked. context is the module instance name which
the variables in ctl-expr must be evaluated in.

-n number Checks the CTL property with index number in the property database.
-P name Checks the CTL property named name in the property database.

If the ag only search environment variable has been set, then a specialized algorithm to check AG
formulas is used instead of the standard model checking algorithms.

ag only search Environment Variable

Enables the use of an ad hoc algorithm for checking AG formulas. Given a formula of the form AG alpha,
the algorithm computes the set of states satisfying alpha, and checks whether it contains the set of reachable
states. If this is not the case, the formula is proved to be false.

forward search Environment Variable

Enables the computation of the reachable states during the process model command and when used in
conjunction with the ag only search environment variable enables the use of an ad hoc algorithm to
verify invariants. This option is set to true by default.

ltl tableau forward search Environment Variable

Forces the computation of the set of reachable states for the tableau resulting from BDD-based LTL model
checking, performed by command check ltlspec. If the variable ltl tableau forward search
is not set (default), the resulting tableau will inherit the computation of the reachable states from the model,
if enabled (see environment variable use reachable states). If the variable is set to true, the set of
reachable states will be calculated for the model and for the tableau resulting from LTL model checking.

Remark. This might improve performances of the command check ltlspec, but may also lead to a
dramatic slow down for some modeld. This variable has effect only when the calculation of reachable states
for the model is enabled (see forward search).

Copyright ©2019 by FBK. 67

nuXmv 2.0.0 User Manual

oreg justice emptiness bdd algorithm Environment Variable

The algorithm used to determine language emptiness of a Büchi fair transition system. The algorithm may
be used from the following commands: check ltlspec, check pslspec. Possible values are:

• EL bwd The default value. The Emerson-Lei algorithm [EL86] in its usual backwards direction, i.e.,
using backward image computations.

• EL fwd A variant of the Emerson-Lei algorithm that uses only forward image com-
putations (see, e.g., [HKQ03]). This variant requires the variables forward search,
ltl tableau forward search, use reachable states to be set. Furthermore, counterex-
ample computation is not yet implemented, i.e., counter examples should not be set. When in-
voking one of the commands mentioned above, all required settings are performed automatically if not
already found as needed, and are restored after execution of the command.

check invar - Performs model checking of invariants Command

check invar [-h] [-m | -o output-file] [-n number | -p
"invar-expr [IN context]" | -P "name"] [-s strategy] [-e
f-b-heuristic] [-j b-b-heuristic] [-t threshold] [-k length]

Performs invariant checking on the given model. An invariant is a set of states. Checking the invariant is
the process of determining that all states reachable from the initial states lie in the invariant. Invariants to
be verified can be provided as simple formulas (without any temporal operators) in the input file via the
INVARSPEC keyword or directly at command line, using the option -p.

Option -n can be used for checking a particular invariant of the model. If neither -n nor -p are used, all the
invariants are checked.

During checking of invariants all the fairness conditions associated with the model are ignored.

If an invariant does not hold, a proof of failure is demonstrated. This consists of a path starting from an initial
state to a state lying outside the invariant. This path has the property that it is the shortest path leading to a
state outside the invariant.

A search strategy can be specified with -s option. This is useful to speed up the check in some situations. If
“forward-backward” or “bdd-bmc” strategy is specified then it is possible to choose a search heuristic with
-e option; “bdd-bmc” strategy has some other options explained below.

See variable use coi size sorting for changing properties verification order.

Copyright ©2019 by FBK. 68

nuXmv 2.0.0 User Manual

Command Options:

-m Pipes the output generated by the program in processing INVARSPEC for-
mulas to the program specified by the PAGER shell variable if defined, else
through the UNIX command “more”.

-o output-file Writes the output generated by the command in processing INVARSPEC for-
mulas to the file output-file.

-n number Checks the INVAR property with index number in the property database.
-p "invar-expr

[IN context]"
The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in.

-P name Checks the INVAR property named name in the property database.
-s strategy Chooses the strategy to use while performing reachability analysis. Possible

strategies are:

• “forward” Explore the search space from initial states and try to reach
bad states.

• “backward” Explore the search space from bad states and try to reach
initial states.

• “forward-backward” Explore the search space using a heuristic to de-
cide at each step whether to move from bad states or from reachable
states.

• “bdd-bmc” Explore the search space using BDD with “forward-
backward” strategy and use a heuristic (specified with -j option) to
decide if to switch from BDD technology to BMC. The idea is to ex-
pand the sets of states reachable from both bad and initial states, even-
tually stop and search for a path between frontiers using BMC technol-
ogy. Options -j, -t and -k are enabled only when using this strategy.
Note that the algorithm used for the BMC approach is the one specified
in the variable “bmc invar alg”.

If this option is not specified, the value of the environment variable
“check invar strategy” is considered.

-e f-b-heuristic Specify the heuristic that decides at each step if we must expand reachable
states or bad states. This option is enabled only when using “forward-
backward” or “bdd-bmc” strategies. Possible values are “zigzag” and
“smallest”. “zigzag” forces to perform a step forward and the next step back-
ward and so on, while “smallest” performs a step from the frontier with the
BDD representing the state is smaller. If this option is not specified, the value
of the environment variable “check invar forward backward heuristic” is
considered.

Copyright ©2019 by FBK. 69

nuXmv 2.0.0 User Manual

-j b-b-heuristic When using “bdd-bmc” strategy specify the heuristic that decides at which
step we must switch from BDD to BMC technolgy. You should use the op-
tion -t to specify the threshold for the chosen heuristic. Possible heuristics
are “steps” and “size”. “steps” forces to switch after a number of steps equal
to the threshold, while “size” switch when BDDs are bigger (in the number
of nodes) than the threshold. If this option is not specified, the value of the
environment variable “check invar bddbmc heuristic” is considered.

-t threshold When using “bdd-bmc” strategy specify the threshold for the chosen heuris-
tic. If this option is not specified, the value of the environment variable
“check invar bddbmc threshold” is considered.

-k length When using “bdd-bmc” strategy specify the maximum length of the path to
search for during BMC search. If this option is not specified, the value of
the environment variable “bmc length” is considered.

check invar strategy Environment Variable

Determines default search strategy to be used when using command “check invar”. See the documentation
of “check invar” for a detailed description of possible values and intended semantics.

check invar forward backward heuristic Environment Variable

Determines default forward-backward heuristic to be used when using command “check invar”. See the
documentation of “check invar” for a detailed description of possible values and intended semantics.

check invar bdd bmc heuristic Environment Variable

Determines default bdd-bmc heuristic to be used when using command “check invar”. See the documenta-
tion of “check invar” for a detailed description of possible values and intended semantics.

check invar bdd bmc threshold Environment Variable

Determines default bdd-bmc threshold to be used when using command “check invar”. See the documenta-
tion of “check invar” for a detailed description of possible values and intended semantics.

check ltlspec - Performs LTL model checking Command

check ltlspec [-h] [-m | -o output-file] [-n number | -p "ltl-expr [IN
context]" | -P "name"]

Performs model checking of LTL formulas. LTL model checking is reduced to CTL model checking as
described in the paper by [CGH97a].

A ltl-expr to be checked can be specified at command line using option -p. Alternatively, option -n
can be used for checking a particular formula in the property database. If neither -n nor -p are used, all the
LTLSPEC formulas in the database are checked.

See variable use coi size sorting for changing properties verification order.

Command Options:

-m Pipes the output generated by the command in processing LTLSPEC formulas
to the program specified by the PAGER shell variable if defined, else through
the UNIX command “more”.

Copyright ©2019 by FBK. 70

nuXmv 2.0.0 User Manual

-o output-file Writes the output generated by the command in processing LTLSPEC formu-
las to the file output-file.

-p "ltl-expr
[IN context]"

An LTL formula to be checked. context is the module instance name which
the variables in ltl-expr must be evaluated in.

-P "name" Checks the LTL property named name
-n number Checks the LTL property with index number in the property database.

ltl2smv single justice Environment Variable

Informs the ltl2smv tableau constructor to generate a symbolic fair transition system for the given LTL
formula with one single Justice constraint instead of possibly more than one. (This is achieved by replacing
the multiple Justice with a single Justice plus a an additional monitor.) By default multiple Justice are built.

check compute - Performs computation of quantitative characteristics Command

check compute [-h] [-m | -o output-file] [-n number | -p
"compute-expr [IN context]" | -P "name"]

This command deals with the computation of quantitative characteristics of real time systems. It is able to
compute the length of the shortest (longest) path from two given set of states.

MAX [alpha , beta]

MIN [alpha , beta]

Properties of the above form can be specified in the input file via the keyword COMPUTE or directly at
command line, using option -p.

If there exists an infinite path beginning in a state in start that never reaches a state in final, then infinity is
returned. If any of the initial or final states is empty, then undefined is returned.

Option -n can be used for computing a particular expression in the model. If neither -n nor -p are used, all
the COMPUTE specifications are computed.

It is important to remark here that if the FSM is not total (i.e. it contains deadlock states) COMPUTE may
produce wrong results. It is possible to check the FSM against deadlock states by calling the command
check fsm.

See variable use coi size sorting for changing properties verification order.

Command Options:

-m Pipes the output generated by the command in processing COMPUTEs to the
program specified by the PAGER shell variable if defined, else through the
UNIX command “more”.

-o output-file Writes the output generated by the command in processing COMPUTEs to the
file output-file.

-p "compute-expr
[IN context]"

A COMPUTE formula to be checked. context is the module instance name
which the variables in compute-expr must be evaluated in.

-n number Computes only the property with index number.
-P name Checks the COMPUTE property named name in the property database.

check property - Checks a property into the current list of properties, or a
newly specified property

Command

Copyright ©2019 by FBK. 71

nuXmv 2.0.0 User Manual

check property [-h] [-n number | -P "name"] | [(-c | -l | -i | -s | -q)
[-p "formula [IN context]"]]

Checks the specified property taken from the property list, or adds the new specified property and checks
it. It is possible to check LTL, CTL, INVAR, PSL and quantitative (COMPUTE) properties. Every newly
inserted property is inserted and checked.

See variable use coi size sorting for changing properties verification order.

Command Options:

-n number Checks the property stored at the given index
-P name Checks the property named name in the property database.
-c Checks all the CTL properties not already checked. If -p is used, the given

formula is expected to be a CTL formula.
-l Checks all the LTL properties not already checked. If -p is used, the given

formula is expected to be a LTL formula.
-i Checks all the INVAR properties not already checked. If -p is used, the given

formula is expected to be a INVAR formula.
-s Checks all the PSL properties not already checked. If -p is used, the given

formula is expected to be a PSL formula.
-q Checks all the COMPUTE properties not already checked. If -p is used, the

given formula is expected to be a COMPUTE formula.
-p "formula

[IN context]"
Checks the formula specified on the command-line. context is the module
instance name which the variables in formula must be evaluated in.

add property - Adds a property to the list of properties Command

add property [-h] [(-c | -l | -i | -q | -s) -p "formula
[IN context]"] [-n "name"]

Adds a property in the list of properties. It is possible to insert LTL, CTL, INVAR, PSL and quantitative
(COMPUTE) properties. Every newly inserted property is initialized to unchecked. A type option must be
given to properly execute the command.

Command Options:

-c Adds a CTL property.
-l Adds an LTL property.
-i Adds an INVAR property.
-s Adds a PSL property.
-q Adds a quantitative (COMPUTE) property.
-p "formula

[IN context]"
Adds the formula specified on the command-line. context is the module
instance name which the variables in formula must be evaluated in.

-n "name" Sets the name of the property to “name”

show property - Shows the currently stored properties Command

show property [-h] [-n idx | -P "name"] [-c | -l | -i | -s | -q] [-f |
-v | -u] [-m | -o] [-F format]

Copyright ©2019 by FBK. 72

nuXmv 2.0.0 User Manual

Shows the properties currently stored in the list of properties. This list is initialized with the properties (CTL,
LTL, INVAR, COMPUTE) present in the input file, if any; then all of the properties added by the user with
the relative check property or add property commands are appended to this list. For every property,
the following informations are displayed:

• the identifier of the property (a progressive number);

• the property name if available;

• the property formula;

• the type (CTL, LTL, INVAR, PSL, COMPUTE)

• the status of the formula (Unchecked, True, False) or the result of the quantitative expression, if any (it
can be infinite);

• if the formula has been found to be false, the index number of the corresponding counterexample trace.

By default, all the properties currently stored in the list of properties are shown. Specifying the suitable
options, properties with a certain status (Unchecked, True, False) and/or of a certain type (e.g. CTL, LTL),
or with a given identifier, it is possible to let the system show a restricted set of properties. It is allowed to
insert only one option per status and one option per type.

Command Options:

-P name Prints out the property named ”name”
-n idx Prints out the property numbered ”idx”
-c Prints only CTL properties
-l Prints only LTL properties
-i Prints only INVAR properties
-q Prints only COMPUTE properties
-u Prints only unchecked properties
-t Prints only those properties found to be true
-f Prints only those properties found to be false
-s Prints the number of stored properties
-o filename Writes the output generated by the command to filename
-F format Prints with the specified format. tabular and xml are common formats, how-

ever use -F help to see all available formats.
-m Pipes the output through the program specified by the PAGER shell variable

if defined, else through the UNIX ”more” command

convert property to invar - Convert, when possible, properties to invariant
properties

Command

convert property to invar[-n number | -P "name" | -l -p G next-expr | -c
-p AG next-expr]

Convert CTL and LTL properties to invariant ones. Only properties of the form “AG next-expr” and “G
next-expr” are processed. The conversion is performed over the specification selected with one between -n
or -P or -p, if given, or all the CTL and LTL properties in the model. The generated properties are added to
the database (they can be listed with the command show property).

Command Options:

-n number Convert CTL or LTL property with index “number”.

Copyright ©2019 by FBK. 73

nuXmv 2.0.0 User Manual

-P "name" Convert CTL or LTL property named “name”.
-p G next-expr |
AG next-expr

Convert the given CTL or LTL formula, see -l and -c.

-l use with -p to specify a LTL formula.
-c use with -p to specify a CTL formula.

write coi model - Writes a restricted flat model to a file Command

write coi model [-h] [-n idx | -p "expr" | -P "name"] [-c | -l | -i | -s
| -q] [-C] [-g]

Writes the currently loaded SMV model in the specified file, after having flattened it. If a property is spec-
ified, the dumped model is the result of applying the Cone Of Influence over that property. otherwise, a
restricted SMV model is dumped for each property in the property database.

Processes are eliminated and a corresponding equivalent model is printed out.

If no file is specified, stderr is used for output

Command Options:

-o filename Attempts to write the flat SMV model in filename
-p expr Applies COI for the given expression expression. Notice that also the prop-

erty type has to be specified
-P name Applies COI for property named ”name”
-n idx Applies COI for property stored with index ”idx”
-c Dumps COI model for all CTL properties
-l Dumps COI model for all LTL properties
-i Dumps COI model for all INVAR properties
-s Dumps COI model for all PSL properties
-q Dumps COI model for all COMPUTE properties
-C Only prints the list of variables that are in the COI of properties
-g Dumps the COI model that represents the union of all COI properties

cone of influence Environment Variable

Uses the cone of influence reduction when checking properties. When cone of influence reduction is active,
the problem encoded in the solving engine consists only of the relevant parts of the model for the property
being checked. This can greatly help in reducing solving time and memory usage. Note however, that a COI
counter-example trace may or may not be a valid counter-example trace for the original model.

use coi size sorting Environment Variable

Uses the cone of influence variables set size for properties sorting, before the verification step. If set to 1,
properties are verified starting with the one that has the smallest COI set, ending with the property with the
biggest COI set. If set to 0, properties are verified according to the declaration order in the input file

prop print method Environment Variable

Determines how properties are printed. The following methods are available:

Copyright ©2019 by FBK. 74

nuXmv 2.0.0 User Manual

name. Prints the property name. If not available, defaults to method “index”.
index. Prints the property index. If not available, defaults to method “truncated”.

truncated. Prints the formula of the property. If the formula is longer than 40 characters, it is truncated.
formula. The default method, simply prints the formula.

4.3 Commands for Bounded Model Checking
In this section we describe in detail the commands for doing and controlling Bounded Model Checking in NUXMV.
Bounded Model Checking is based on the reduction of the bounded model checking problem to a propositional
satisfiability problem. After the problem is generated, NUXMV internally calls a propositional SAT solver in
order to find an assignment which satisfies the problem. Currently NUXMV supplies two SAT solvers: Zchaff and
MiniSat. If none of the two is enabled, all Bounded Model Checking part in NUXMV will not be available. Notice
that Zchaff and MiniSat are for non-commercial purposes only. They are therefore not included in the source code
distribution or in some of the binary distributions of NUXMV.

Some commands for Bounded Model Checking use incremental algorithms. These algorithms exploit the
fact that satisfiability problems generated for a particular bounded model checking problem often share common
subparts. So information obtained during solving of one satisfiability problem can be used in solving of another
one. The incremental algorithms usually run quicker then non-incremental ones but require a SAT solver with
incremental interface. At the moment, only Zchaff and MiniSat offer such an interface. If none of these solvers
are linked to NUXMV, then the commands which make use of the incremental algorithms will not be available.

It is also possible to generate the satisfiability problem without calling the SAT solver. Each generated problem
is dumped in DIMACS format to a file. DIMACS is the standard format used as input by most SAT solvers, so it is
possible to use NUXMV with a separate external SAT solver. At the moment, the DIMACS files can be generated
only by commands which do not use incremental algorithms.

bmc setup - Builds the model in a Boolean Epression format. Command

bmc setup [-h]

You must call this command before use any other bmc-related command. Only one call per session is
required.

go bmc - Initializes the system for the BMC verification. Command

go bmc [-h] [-f]

This command initializes the system for verification. It is equivalent to the
command sequence read model, flatten hierarchy, encode variables,
build boolean model, bmc setup. If some commands have already been executed, then only
the remaining ones will be invoked.

Command Options:

-f Forces model construction even when Cone Of Influence is enabled.

sexp inlining Environment Variable

This variable enables the Sexp inlining when the boolean model is built. Sexp inlining is performed in a
similar way to RBC inlining (see system variable rbc inlining) but the underlying structures and kind
of problem are different, because inlining is applied at the Sexp level instead of the RBC level.

Inlining is applied to initial states, invariants and transition relations. By default, Sexp inlining is disabled.

rbc inlining Environment Variable

Copyright ©2019 by FBK. 75

nuXmv 2.0.0 User Manual

When set, this variable makes BMC perform the RBC inlining before committing any problem to the SAT
solver. Depending on the problem structure and length, the inlining may either make SAT solving much
faster, or slow it down dramatically. Experiments showed an average improvement in time of SAT solving
when RBC inlining is enabled. RBC inlining is enabled by default.

The idea about inlining was taken from [ABE00] by Parosh Aziz Abdulla, Per Bjesse and Niklas Eén.

rbc rbc2cnf algorithm Environment Variable

This variable defines the algorithm used for conversion from RBC to CNF format in which a problem is
supplied to a SAT solver. The default value ’sheridan’ refers to [She04] algorithm which allows to obtain
a more compact CNF formulas. The other value ’tseitin’ refers to a standard Tseiting transformation
algorithm.

check ltlspec bmc - Checks the given LTL specification, or all LTL specifica-
tions if no formula is given. Checking parameters are the maximum length and
the loopback value

Command

check ltlspec bmc [-h] | [-n idx | -p "formula [IN context]" | -P
"name"] [-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and calls SAT solver for each one. Each problem is related
to a specific problem bound, which increases from zero (0) to the given maximum problem length. Here
max length is the bound of the problem that system is going to generate and solve. In this context the
maximum problem bound is represented by the -k command parameter, or by its default value stored in
the environment variable bmc length. The single generated problem also depends on the loopback

parameter you can explicitly specify by the -l option, or by its default value stored in the environment
variable bmc loopback.

The property to be checked may be specified using the -n idx or the -p "formula" options. If you need
to generate a DIMACS dump file of all generated problems, you must use the option -o "filename".

Command Options:

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the LTL property named name in the property database.
-k max length max length is the maximum problem bound to be checked. Only natural

numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopbacks from zero to length-

1” .

Copyright ©2019 by FBK. 76

nuXmv 2.0.0 User Manual

-o filename filename is the name of the dumped dimacs file. It may contain special sym-
bols which will be macro-expanded to form the real file name. Possible
symbols are:
• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the property database.
• @@: the ‘@’ character.

check ltlspec bmc onepb - Checks the given LTL specification, or all LTL
specifications if no formula is given. Checking parameters are the single prob-
lem bound and the loopback value

Command

check ltlspec bmc onepb [-h] | [-n idx | -p "formula" [IN context] | -P
"name"] [-k length] [-l loopback] [-o filename]

As command check ltlspec bmc but it produces only one single problem with fixed bound and loop-
back values, with no iteration of the problem bound from zero to max length.

Command Options:

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database. The validity of index value is checked out
by the system.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the LTL property named name in the property database.
-k length length is the problem bound used when generating the single problem. Only

natural numbers are valid values for this option. If no value is given the
environment variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (’+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is considered

a value relative to length. Any invalid combination of length and loopback
will be skipped during the generation/solving process.
• the symbol ’X’, which means “no loopback” .
• the symbol ’*’, which means “all possible loopback from zero to length-1”.

-o filename filename is the name of the dumped dimacs file. It may contain special sym-
bols which will be macro-expanded to form the real file name. Possible
symbols are:
• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the property database.

Copyright ©2019 by FBK. 77

nuXmv 2.0.0 User Manual

• @@: the ’@’ character.

gen ltlspec bmc - Dumps into one or more dimacs files the given LTL specifica-
tion, or all LTL specifications if no formula is given. Generation and dumping
parameters are the maximum bound and the loopback value

Command

gen ltlspec bmc [-h] | [-n idx | -p "formula" [IN context] | -P "name"]
[-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and dumps each problem into a dimacs file. Each problem
is related to a specific problem bound, which increases from zero (0) to the given maximum problem bound.
In this short description length is the bound of the problem that system is going to dump out.

In this context the maximum problem bound is represented by the max length parameter, or by its default
value stored in the environment variable bmc length.

Each dumped problem also depends on the loopback you can explicitly specify by the -l option, or by its
default value stored in the environment variable bmc loopback.

The property to be checked may be specified using the -n idx or the -p "formula " options.

You may specify dimacs file name by using the option -o filename , otherwise the default value stored
in the environment variable bmc dimacs filename will be considered.

Command Options:

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database. The validity of index value is checked out
by the system.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the LTL property named name in the property database.
-k max length max length is the maximum problem bound used when increasing problem

bound starting from zero. Only natural numbers are valid values for this
option. If no value is given the environment variable bmc length value is
considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (’+’) can be also

used as prefix of the number. Any invalid combination of bound and loop-
back will be skipped during the generation and dumping process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of bound and
loopback will be skipped during the generation process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopback from zero to length-1”.

-o filename filename is the name of dumped dimacs files. If this options is not specified,
variable bmc dimacs filename will be considered. The file name string may
contain special symbols which will be macro-expanded to form the real file
name. Possible symbols are:

Copyright ©2019 by FBK. 78

nuXmv 2.0.0 User Manual

• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value .
• @n: index of the currently processed formula in the property database.
• @@: the ‘@’ character.

gen ltlspec bmc onepb - Dumps into one dimacs file the problem generated
for the given LTL specification, or for all LTL specifications if no formula is
explicitly given. Generation and dumping parameters are the problem bound
and the loopback value

Command

gen ltlspec bmc onepb [-h] | [-n idx | -p "formula" [IN context] | -P
"name"] [-k length] [-l loopback] [-o filename]

As the gen ltlspec bmc command, but it generates and dumps only one problem given its bound and
loopback.

Command Options:

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database. The validity of index value is checked out
by the system.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the LTL property named name in the property database.
-k length length is the single problem bound used to generate and dump it. Only natu-

ral numbers are valid values for this option. If no value is given the environ-
ment variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, length-1). A positive sign (’+’) can be also used as

prefix of the number. Any invalid combination of length and loopback will
be skipped during the generation and dumping process.
• negative number in (-1, -length). Any invalid combination of length and

loopback will be skipped during the generation process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopback from zero to length-1”.

-o filename filename is the name of the dumped dimacs file. If this options is not speci-
fied, variable bmc dimacs filename will be considered. The file name
string may contain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:
• @F: model name with path part
• @f: model name without path part
• @k: current problem bound
• @l: current loopback value
• @n: index of the currently processed formula in the property database
• @@: the ’@’ character

check ltlspec bmc inc - Checks the given LTL specification, or all LTL spec-
ifications if no formula is given, using an incremental algorithm. Checking
parameters are the maximum length and the loopback value

Command

Copyright ©2019 by FBK. 79

nuXmv 2.0.0 User Manual

check ltlspec bmc inc [-h] | [-n idx | -p "formula [IN context]" | -P
"name"] [-k max length] [-l loopback]

For each problem this command incrementally generates many satisfiability subproblems and calls the SAT
solver on each one of them. The incremental algorithm exploits the fact that subproblems have common
subparts, so information obtained during a previous call to the SAT solver can be used in the consecutive
ones. Logically, this command does the same thing as check ltlspec bmc (see the description on page
76) but usually runs considerably quicker. A SAT solver with an incremental interface is required by this
command, therefore if no such SAT solver is provided then this command will be unavailable.

See variable use coi size sorting for changing properties verification order.

Command Options:

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the LTL property named name in the property database.
-k max length max length is the maximum problem bound must be reached. Only natural

numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopback from zero to length-1”

.

check ltlspec sbmc - Checks the given LTL specification, or all LTL specifica-
tions if no formula is given. Checking parameters are the maximum length and
the loopback value

Command

check ltlspec sbmc [-h] | [-n idx | -p "formula [IN context]" | -P
"name"] [-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and calls SAT solver for each one. The BMC encoding
used is the one by of Latvala, Biere, Heljanko and Junttila as described in [LBHJ05]. Each problem is
related to a specific problem bound, which increases from zero (0) to the given maximum problem length.
Here max length is the bound of the problem that system is going to generate and solve. In this context
the maximum problem bound is represented by the -k command parameter, or by its default value stored
in the environment variable bmc length. The single generated problem also depends on the loopback

parameter you can explicitly specify by the -l option, or by its default value stored in the environment
variable bmc loopback.

The property to be checked may be specified using the -n idx or the -p "formula" options. If you need
to generate a DIMACS dump file of all generated problems, you must use the option -o "filename".

See variable use coi size sorting for changing properties verification order.

Command Options:

Copyright ©2019 by FBK. 80

nuXmv 2.0.0 User Manual

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the LTL property named name in the property database.
-k max length max length is the maximum problem bound to be checked. Only natural

numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopbacks from zero to length-

1” .
-o filename filename is the name of the dumped dimacs file. It may contain special sym-

bols which will be macro-expanded to form the real file name. Possible
symbols are:
• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the property database.
• @@: the ‘@’ character.

check ltlspec sbmc inc - Checks the given LTL specification, or all LTL spec-
ifications if no formula is given. Checking parameters are the maximum length
and the loopback value

Command

check ltlspec sbmc inc [-h] | [-n idx | -p "formula [IN context]" | -P
"name"] [-k max length] [-N] [-c]

This command generates one or more problems, and calls SAT solver for each one. The Incremental BMC
encoding used is the one by of Heljanko, Junttila and Latvala, as described in [KHL05]. For each problem
this command incrementally generates many satisfiability subproblems and calls the SAT solver on each one
of them. Each problem is related to a specific problem bound, which increases from zero (0) to the given
maximum problem length. Here max length is the bound of the problem that system is going to generate
and solve. In this context the maximum problem bound is represented by the -k command parameter, or by
its default value stored in the environment variable bmc length.

The property to be checked may be specified using the -n idx, the -p "formula" or the -P "name"
options.

See variable use coi size sorting for changing properties verification order.

Command Options:

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database.

Copyright ©2019 by FBK. 81

nuXmv 2.0.0 User Manual

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the LTL property named name in the property database.
-k max length max length is the maximum problem bound to be checked. Only natural

numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-N Does not perform virtual unrolling.
-c Performs completeness check.

gen ltlspec sbmc - Dumps into one or more dimacs files the given LTL specifi-
cation, or all LTL specifications if no formula is given. Generation and dumping
parameters are the maximum bound and the loopback values.

Command

gen ltlspec sbmc [-h] | [-n idx | -p "formula [IN context]" | -P
"name"] [-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and dumps each problem into a dimacs file. The BMC
encoding used is the one by of Latvala, Biere, Heljanko and Junttila as described in [LBHJ05]. Each problem
is related to a specific problem bound, which increases from zero (0) to the given maximum problem length.
Here max length is the bound of the problem that system is going to generate and dump. In this context
the maximum problem bound is represented by the -k command parameter, or by its default value stored
in the environment variable bmc length. The single generated problem also depends on the loopback

parameter you can explicitly specify by the -l option, or by its default value stored in the environment
variable bmc loopback.

The property to be used for the problem dumping may be specified using the -n idx or the -p
"formula" options. You may specify dimacs file name by using the option -o "filename", other-
wise the default value stored in the environment variable bmc dimacs filename will be considered.

Command Options:

-n index index is the numeric index of a valid LTL specification formula actually lo-
cated in the properties database.

-p "formula
[IN context]"

Dumps the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P "name" Checks the LTL property named name
-k max length max length is the maximum problem bound to be generated. Only natural

numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopbacks from zero to length-

1” .

Copyright ©2019 by FBK. 82

nuXmv 2.0.0 User Manual

-o filename filename is the name of the dumped dimacs file. It may contain special sym-
bols which will be macro-expanded to form the real file name. Possible
symbols are:
• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the property database.
• @@: the ‘@’ character.

bmc length Environment Variable

Sets the generated problem bound. Possible values are any natural number, but must be compatible with the
current value held by the variable bmc loopback. The default value is 10.

bmc loopback Environment Variable

Sets the generated problem loop. Possible values are:

• Any natural number, but less than the current value of the variable bmc length. In this case the loop
point is absolute.

• Any negative number, but greater than or equal to -bmc length. In this case specified loop is the loop
length.

• The symbol ’X’, which means “no loopback”.

• The symbol ’*’, which means “any possible loopbacks”.

The default value is *.

bmc optimized tableau Environment Variable

Uses depth1 optimization for LTL Tableau construction in BMC.

bmc force pltl tableau Environment Variable

Forces to use PLTL instead of LTL for BMC tableau construction.

bmc dimacs filename Environment Variable

This is the default file name used when generating DIMACS problem dumps. This variable may be taken
into account by all commands which belong to the gen ltlspec bmc family. DIMACS file name can contain
special symbols which will be expanded to represent the actual file name. Possible symbols are:

• @F The currently loaded model name with full path.

• @f The currently loaded model name without path part.

• @n The numerical index of the currently processed formula in the property database.

• @k The currently generated problem length.

• @l The currently generated problem loopback value.

• @@ The ‘@’ character.

The default value is “@f k@k l@l n@n ”.

Copyright ©2019 by FBK. 83

nuXmv 2.0.0 User Manual

bmc sbmc gf fg opt Environment Variable

Controls whether the system exploits an optimization when performing SBMC on formulae in the form FGp
or GFp. The default value is 1 (active).

check invar bmc - Generates and solves the given invariant, or all invariants
if no formula is given

Command

check invar bmc [-h | -n idx | -p "formula" [IN context] | -P "name"]
[-a alg] [-e] [-k bmc bound] [-o filename]

In Bounded Model Checking, invariants are proved using induction. For this, satisfiability problems for the
base and induction step are generated and a SAT solver is invoked on each of them. At the moment, two
algorithms can be used to prove invariants. In one algorithm, which we call “classic” (i.e. k-induction with
k=1), the base and induction steps are built on one state and one transition, respectively. Another algorithm,
which we call “een-sorensson” [ES04], can build the base and induction steps on many states and transitions.
As a result, the second algorithm is more powerful.

Also, notice that during checking of invariants all the fairness conditions associated with the model are
ignored.

See variable use coi size sorting for changing properties verification order.

Command Options:

-n index index is the numeric index of a valid INVAR specification formula actually
located in the property database. The validity of index value is checked out
by the system.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the INVAR property named name in the property database.
-k max length max length is the maximum problem bound that can be reached. Only nat-

ural numbers are valid values for this option. Use this option only if the
“een-sorensson” algorithm is selected. If no value is given the environment
variable bmc length is considered instead.

-e Performs an extra induction step for finding a proof. Can be used only with
the “een-sorensson” algorithm

-a alg alg specifies the algorithm. The value can be classic (i.e. k-induction
with k=1) or een-sorensson. If no value is given the environment variable
bmc invar alg is considered instead.

-o filename filename is the name of the dumped dimacs file. It may contain special sym-
bols which will be macro-expanded to form the real file name. Possible
symbols are:
• @F: model name with path part
• @f: model name without path part
• @n: index of the currently processed formula in the properties database
• @@: the ‘@’ character

gen invar bmc - Generates the given invariant, or all invariants if no formula
is given

Command

gen invar bmc [-h | -n idx | -p "formula [IN context]" | -P "name"] [-o
filename]

Copyright ©2019 by FBK. 84

nuXmv 2.0.0 User Manual

At the moment, the invariants are generated using “classic” (k-induction with k=1) algorithm only (see the
description of check invar bmc on page 84).

Command Options:

-n index index is the numeric index of a valid INVAR specification formula actually
located in the property database. The validity of index value is checked out
by the system.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P name Checks the INVAR property named name in the property database.
-o filename filename is the name of the dumped dimacs file. If you do not use

this option the dimacs file name is taken from the environment variable
bmc invar dimacs filename.
File name may contain special symbols which will be macro-expanded to
form the real dimacs file name. Possible symbols are:
• @F: model name with path part
• @f: model name without path part
• @n: index of the currently processed formula in the properties database
• @@: the ’@’ character

check invar bmc inc - Generates and solves the given invariant, or all invari-
ants if no formula is given, using incremental algorithms

Command

check invar bmc inc [-h] | [-n idx | -p "formula" [IN context] | -P
"name"]] [-a algorithm]

This command does the same thing as check invar bmc (see the description on page 84) but uses an in-
cremental algorithm and therefore usually runs considerably quicker. The incremental algorithms exploit the
fact that satisfiability problems generated for a particular invariant have common subparts, so information
obtained during solving of one problem can be used in solving another one. A SAT solver with an incre-
mental interface is required by this command. If no such SAT solver is provided then this command will be
unavailable.

There are two incremental algorithms which can be used: “Dual” and “ZigZag”. Both algorithms are equally
powerful, but may show different performance depending on a SAT solver used and an invariant being
proved. At the moment, the “Dual” algorithm cannot be used if there are input variables in a given model.
For additional information about algorithms, consider [ES04].

Also, notice that during checking of invariants all the fairness conditions associated with the model are
ignored.

See variable use coi size sorting for changing properties verification order.

Copyright ©2019 by FBK. 85

nuXmv 2.0.0 User Manual

Command Options:

-n index index is the numeric index of a valid INVAR specification formula actually
located in the property database. The validity of index value is checked out
by the system.

-p "formula
[IN context]"

Checks the formula specified on the command-line. context is the mod-
ule instance name which the variables in formula must be evaluated in.

-P "name" Checks the INVARSPEC property named name
-k max length max length is the maximum problem bound that can be reached. Only natu-

ral numbers are valid values for this option. If no value is given the environ-
ment variable bmc length is considered instead.

-K step size Only for falsification: increment the search of step size at a time. Must
be greater than zero (1 by default).

-a alg alg specifies the algorithm to use. The value can be dual or zigzag. If
no value is given the environment variable bmc inc invar alg is considered
instead.

bmc invar alg Environment Variable

Sets the default algorithm used by the command check invar bmc. Possible values are classic (for
k-induction with k=1) and een-sorensson. The default value is classic.

bmc inc invar alg Environment Variable

Sets the default algorithm used by the command check invar bmc inc. Possible values are dual and
zigzag. The default value is dual.

bmc invar dimacs filename Environment Variable

This is the default file name used when generating DIMACS invar dumps. This variable may be taken into
account by the command gen invar bmc. DIMACS file name can contain special symbols which will be
expanded to represent the actual file name. Possible symbols are:

• @F The currently loaded model name with full path.

• @f The currently loaded model name without path part.

• @n The numerical index of the currently processed formula in the properties database.

• @@ The ‘@’ character.

The default value is “@f invar n@n ”.

sat solver Environment Variable

The SAT solver’s name actually to be used. Default SAT solver is MiniSat. Depending on the NUXMV
configuration, also the Zchaff SAT solver can be available or not. Notice that Zchaff and MiniSat are for
non-commercial purposes only. If no SAT solver has been configured, BMC commands and environment
variables will not be available.

bmc pick state - Picks a state from the set of initial states Command

bmc pick state [-h] [-v] [-c "constraint" | -s trace.state] [-r | -i
[-a]]

Copyright ©2019 by FBK. 86

nuXmv 2.0.0 User Manual

Chooses an element from the set of initial states, and makes it the current state (replacing the old one).
The chosen state is stored as the first state of a new trace ready to be lengthened by steps states by the
bmc simulate command or the bmc inc simulate command.

Copyright ©2019 by FBK. 87

nuXmv 2.0.0 User Manual

Command Options:

-v Verbosely prints the generated trace
-c constraint Set a constraint to narrow initial states.
-s state Picks state from trace.state label.
-r Randomly picks a state from the set of initial states.
-i Enters simulation’s interactive mode.
-a Displays all the state variables (changed and unchanged) in the interactive

session

bmc simulate - Generates a trace of the model from 0 (zero) to k Command

bmc simulate [-h] [-p | -v] [-r] [[-c "constraints"] | [-t
"constraints"]] [-k steps]

bmc simulate does not require a specification to build the problem, because only the model is used to
build it. The problem length is represented by the -k command parameter, or by its default value stored in
the environment variable bmc length.

Command Options:

-p Prints the generated trace (only changed variables).
-v Prints the generated trace (all variables).
-r Picks a state from a set of possible future states in a random way.
-c constraint Performs a simulation in which computation is restricted to states satisfy-

ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps trace is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion cannot contain next operators, and is automatically shifted by one state
in order to constraint only the next steps

-t "constraints" Performs a simulation in which computation is restricted to states satisfy-
ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps trace is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion can contain next operators, and is NOT automatically shifted by one
state as done with option -c

-k steps Maximum length of the path according to the constraints. The length of a
trace could contain less than steps states: this is the case in which sim-
ulation stops in an intermediate step because it may not exist any future
state satisfying those constraints. The default value is determined by the
default simulation steps environment variable

Copyright ©2019 by FBK. 88

nuXmv 2.0.0 User Manual

bmc inc simulate - Generates a trace of the model from 0 (zero) to k Command

bmc inc simulate [-h] [-p | -v] [-r | -i [-a]] [[-c "constraints"] | [-t
"constraints"]] [-k steps]

Performs incremental simulation of the model. bmc inc simulate does not require a specification to
build the problem, because only the model is used to build it. The problem length is represented by the -k
command parameter, or by its default value stored in the environment variable bmc length.

Command Options:

-p Prints the generated trace (only changed variables).
-v Prints the generated trace (all variables).
-r Picks a state from a set of possible future states in a random way.
-i Enters simulation’s interactive mode.
-a Displays all the state variables (changed and unchanged) in the interactive

session
-c constraint Performs a simulation in which computation is restricted to states satisfy-

ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps trace is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion cannot contain next operators, and is automatically shifted by one state
in order to constraint only the next steps

-t "constraints" Performs a simulation in which computation is restricted to states satisfy-
ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps trace is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion can contain next operators, and is NOT automatically shifted by one
state as done with option -c

-k steps Maximum length of the path according to the constraints. The length of a
trace could contain less than steps states: this is the case in which sim-
ulation stops in an intermediate step because it may not exist any future
state satisfying those constraints. The default value is determined by the
default simulation steps environment variable

bmc simulate check feasible constraints - Checks feasability for the given
constraints

Command

bmc simulate check feasible constraints [-h] [-q] [-c "constr"]

Checks if the given constraints are feasible for BMC simulation.

Command Options:

Copyright ©2019 by FBK. 89

nuXmv 2.0.0 User Manual

-q Prints the output in compact form.
-c constr Specify one constraint whose feasability has to be checked (can be used

multiple times, order is important to read the result)

4.4 Commands for checking PSL specifications
The following commands allow for model checking of PSL specifications.

check pslspec - Performs BDD-based PSL model checking Command

check pslspec [-h] [-m | -o output-file] [-n number | -p
"psl-expr [IN context]" | -P "name"]

Check psl properties using BDD-based model checking.

A psl-expr to be checked can be specified at command line using option -p. Alternatively, option -n
can be used for checking a particular formula in the property database. If neither -n nor -p are used, all the
PSLSPEC formulas in the database are checked.

See variable use coi size sorting for changing properties verification order.

Command Options:

-m Pipes the output generated by the command in processing PSLSPEC formulas
to the program specified by the PAGER shell variable if defined, else through
the UNIX command “more”.

-o output-file Writes the output generated by the command in processing PSLSPEC formu-
las to the file output-file

-p "psl-expr
[IN context]"

A PSL formula to be checked. context is the module instance name which
the variables in psl-expr must be evaluated in.

-n number Checks the PSL property with index number in the property database.
-P name Checks the PSL property named name in the property database.

check pslspec bmc - Performs SAT-based PSL model checking Command

check pslspec bmc [-h] [-m | -o output-file] [-n number | -p
"psl-expr [IN context]" | -P "name"] [-g] [-1] [-k
bmc lenght] [-l loopback]

Check psl properties using SAT-based model checking.

A psl-expr to be checked can be specified at command line using option -p. Alternatively, option -n
can be used for checking a particular formula in the property database. If neither -n nor -p are used, all
the PSLSPEC formulas in the database are checked. Options -k and -l can be used to define the maximum
problem bound, and the value of the loopback for the single generated problems respectively; their values
can be stored in the environment variables bmc lenght and bmc loopback. Single problems can be generated
by using option -1. Bounded model checking problems can be generated and dumped in a file by using
option -g.

See variable use coi size sorting for changing properties verification order.

Command Options:

Copyright ©2019 by FBK. 90

nuXmv 2.0.0 User Manual

-m Pipes the output generated by the command in processing PSLSPEC formulas
to the program specified by the PAGER shell variable if defined, else through
the UNIX command “more”.

-o output-file Writes the output generated by the command in processing PSLSPEC formu-
las to the file output-file

-p "psl-expr
[IN context]"

A PSL formula to be checked. context is the module instance name which
the variables in psl-expr must be evaluated in.

-n number Checks the PSL property with index number in the property database.
-P name Checks the PSL property named name in the property database.
-g Dumps DIMACS version of bounded model checking problem into a file

whose name depends on the system variable bmc dimacs filename.
This feature is not allowed in combination of the option -i.

-1 Generates a single bounded model checking problem with fixed bound and
loopback values, it does not iterate incrementing the value of the problem
bound.

-k bmc length bmc length is the maximum problem bound to be checked. Only natural
numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopbacks from zero to length-

1”. If no value is given the environment variable bmc loopback is consid-
ered instead.

check pslspec bmc inc - Performs incremental SAT-based PSL model checking Command

check pslspec bmc inc [-h] [-m | -o output-file] [-n number | -p
"psl-expr [IN context]" | -P "name"] [-1] [-k
bmc lenght] [-l loopback]

Check psl properties using incremental SAT-based model checking.

A psl-expr to be checked can be specified at command line using option -p. Alternatively, option -n
can be used for checking a particular formula in the property database. If neither -n nor -p are used, all
the PSLSPEC formulas in the database are checked. Options -k and -l can be used to define the maximum
problem bound, and the value of the loopback for the single generated problems respectively; their values
can be stored in the environment variables bmc lenght and bmc loopback. Single problems can be generated
by using option -1. Bounded model checking problems can be generated and dumped in a file by using
option -g.

See variable use coi size sorting for changing properties verification order.

Command Options:

-m Pipes the output generated by the command in processing PSLSPEC formulas
to the program specified by the PAGER shell variable if defined, else through
the UNIX command “more”.

Copyright ©2019 by FBK. 91

nuXmv 2.0.0 User Manual

-o output-file Writes the output generated by the command in processing PSLSPEC formu-
las to the file output-file

-p "psl-expr
[IN context]"

A PSL formula to be checked. context is the module instance name which
the variables in psl-expr must be evaluated in.

-n number Checks the PSL property with index number in the property database.
-P name Checks the PSL property named name in the property database.
-1 Generates a single bounded model checking problem with fixed bound and

loopback values, it does not iterate incrementing the value of the problem
bound.

-k bmc length bmc length is the maximum problem bound to be checked. Only natural
numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopbacks from zero to length-

1”. If no value is given the environment variable bmc loopback is consid-
ered instead.

check pslspec sbmc - Performs SAT-based PSL model checking Command

check pslspec sbmc [-h] [-m | -o output-file] [-n number | -p
"psl-expr [IN context]" | -P "name"] [-g] [-1] [-k
bmc lenght] [-l loopback]

Check psl properties using SAT-based model checking. Use the SBMC algorithms.

A psl-expr to be checked can be specified at command line using option -p. Alternatively, option -n
can be used for checking a particular formula in the property database. If neither -n nor -p are used, all
the PSLSPEC formulas in the database are checked. Options -k and -l can be used to define the maximum
problem bound, and the value of the loopback for the single generated problems respectively; their values
can be stored in the environment variables bmc lenght and bmc loopback. Single problems can be generated
by using option -1. Bounded model checking problems can be generated and dumped in a file by using
option -g.

See variable use coi size sorting for changing properties verification order.

Command Options:

-m Pipes the output generated by the command in processing PSLSPEC formulas
to the program specified by the PAGER shell variable if defined, else through
the UNIX command “more”.

-o output-file Writes the output generated by the command in processing PSLSPEC formu-
las to the file output-file

-p "psl-expr
[IN context]"

A PSL formula to be checked. context is the module instance name which
the variables in psl-expr must be evaluated in.

Copyright ©2019 by FBK. 92

nuXmv 2.0.0 User Manual

-n number Checks the PSL property with index number in the property database.
-P name Checks the PSL property named name in the property database.
-g Dumps DIMACS version of bounded model checking problem into a file

whose name depends on the system variable bmc dimacs filename.
This feature is not allowed in combination of the option -i.

-1 Generates a single bounded model checking problem with fixed bound and
loopback values, it does not iterate incrementing the value of the problem
bound.

-k bmc length bmc length is the maximum problem bound to be checked. Only natural
numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopbacks from zero to length-

1”. If no value is given the environment variable bmc loopback is consid-
ered instead.

check pslspec sbmc inc - Performs incremental SAT-based PSL model check-
ing

Command

check pslspec sbmc inc [-h] [-m | -o output-file] [-n number | -p
"psl-expr [IN context]" | -P "name"] [-1] [-k
bmc lenght] [-l loopback] [-c] [-N]

Check psl properties using incremental SAT-based model checking. Use the SBMC algorithms.

A psl-expr to be checked can be specified at command line using option -p. Alternatively, option -n
can be used for checking a particular formula in the property database. If neither -n nor -p are used, all
the PSLSPEC formulas in the database are checked. Options -k and -l can be used to define the maximum
problem bound, and the value of the loopback for the single generated problems respectively; their values
can be stored in the environment variables bmc lenght and bmc loopback. Single problems can be generated
by using option -1. Bounded model checking problems can be generated and dumped in a file by using
option -g. With the option -c is possible to perform a completeness check, while with the option -N is
possible to disable the virtual unrolling.

See variable use coi size sorting for changing properties verification order.

Command Options:

-m Pipes the output generated by the command in processing PSLSPEC formulas
to the program specified by the PAGER shell variable if defined, else through
the UNIX command “more”.

-o output-file Writes the output generated by the command in processing PSLSPEC formu-
las to the file output-file

-p "psl-expr
[IN context]"

A PSL formula to be checked. context is the module instance name which
the variables in psl-expr must be evaluated in.

Copyright ©2019 by FBK. 93

nuXmv 2.0.0 User Manual

-n number Checks the PSL property with index number in the property database.
-P name Checks the PSL property named name in the property database.
-1 Generates a single bounded model checking problem with fixed bound and

loopback values, it does not iterate incrementing the value of the problem
bound.

-k bmc length bmc length is the maximum problem bound to be checked. Only natural
numbers are valid values for this option. If no value is given the environment
variable bmc length is considered instead.

-l loopback The loopback value may be:
• a natural number in (0, max length-1). A positive sign (‘+’) can be also

used as prefix of the number. Any invalid combination of length and loop-
back will be skipped during the generation/solving process.
• a negative number in (-1, -bmc length). In this case loopback is consid-

ered a value relative to max length. Any invalid combination of length and
loopback will be skipped during the generation/solving process.
• the symbol ‘X’, which means “no loopback”.
• the symbol ‘*’, which means “all possible loopbacks from zero to length-

1”. If no value is given the environment variable bmc loopback is consid-
ered instead.

-c Performs completeness check.
-N Does not perform virtual unrolling.

4.5 Simulation Commands
In this section we describe the commands that allow to simulate a NUXMV specification. See also the section
Section 4.7 [Traces], page 97 that describes the commands available for manipulating traces.

pick state - Picks a state from the set of initial states Command

pick state [-h] [-v] [-r | -i [-a]] [-c "constraints" | -s trace.state]
[-S seed]

Chooses an element from the set of initial states, and makes it the current state (replacing the old one).
The chosen state is stored as the first state of a new trace ready to be lengthened by steps states by the
simulate command. The state can be chosen according to different policies which can be specified via
command line options. By default the state is chosen in a deterministic way.

Command Options:

-v Verbosely prints out chosen state (all state and frozen variables, otherwise it
prints out only the label t.1 of the state chosen, where t is the number of
the new trace, that is the number of traces so far generated plus one).

-r Randomly picks a state from the set of initial states.
-i Enables the user to interactively pick up an initial state. The user is requested

to choose a state from a list of possible items (every item in the list doesn’t
show frozen and state variables unchanged with respect to a previous item).
If the number of possible states is too high, then the user has to specify some
further constraints as “simple expression”.

Copyright ©2019 by FBK. 94

nuXmv 2.0.0 User Manual

-a Displays all state and frozen variables (changed and unchanged with respect
to a previous item) in an interactive picking. This option works only if the
-i options has been specified.

-c "constraints" Uses constraints to restrict the set of initial states in which the state has
to be picked. constraints must be enclosed between double quotes " ".

-s trace.state Picks state from trace.state label. A new simulation trace will be created by
copying prefix of the source trace up to specified state.

-S seed Sets the seed to be used for random simulation.

simulate - Performs a simulation from the current selected state Command

simulate [-h] [-p | -v] [-r | -i [-a]] [-c "constraints" | -t
"constraints"] [-k steps] [-S seed]

Generates a sequence of at most steps states (representing a possible execution of the model), starting from
the current state. The current state must be set via the pick state or goto state commands.

It is possible to run the simulation in three ways (according to different command line policies): deterministic
(the default mode), random and interactive.

The resulting sequence is stored in a trace indexed with an integer number taking into account the total
number of traces stored in the system. There is a different behavior in the way traces are built, according
to how current state is set: current state is always put at the beginning of a new trace (so it will contain at
most steps + 1 states) except when it is the last state of an existent old trace. In this case the old trace is
lengthened by at most steps states.

Command Options:

-p Prints current generated trace (only those variables whose value changed
from the previous state).

-v Verbosely prints current generated trace (changed and unchanged state and
frozen variables).

-r Picks a state from a set of possible future states in a random way.
-i Enables the user to interactively choose every state of the trace, step by step.

If the number of possible states is too high, then the user has to specify some
constraints as simple expression. These constraints are used only for a sin-
gle simulation step and are forgotten in the following ones. They are to be
intended in an opposite way with respect to those constraints eventually en-
tered with the pick state command, or during an interactive simulation
session (when the number of future states to be displayed is too high), that
are local only to a single step of the simulation and are forgotten in the next
one.
To improve readability of the list of the states which the user must pick
one from, each state is presented in terms of difference with respect of the
previous one.

Copyright ©2019 by FBK. 95

nuXmv 2.0.0 User Manual

-a Displays all the state and frozen variables (changed and unchanged) during
every step of an interactive session. This option works only if the -i option
has been specified.

-c "constraints" Performs a simulation in which computation is restricted to states satisfy-
ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps trace is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion cannot contain next operators, and is automatically shifted by one state
in order to constraint only the next steps

-t "constraints" Performs a simulation in which computation is restricted to states satisfy-
ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps trace is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion can contain next operators, and is NOT automatically shifted by one
state as done with option -c

-k steps Maximum length of the path according to the constraints. The length of a
trace could contain less than steps states: this is the case in which sim-
ulation stops in an intermediate step because it may not exist any future
state satisfying those constraints. The default value is determined by the
default simulation steps environment variable

-S seed Sets the seed to be used for random simulation.

default simulation steps Environment Variable

Controls the default number of steps performed by all simulation commands. The default is 10.

shown states Environment Variable

Controls the maximum number of states tail will be shown during an interactive simulation session. Possible
values are integers from 1 to 100. The default value is 25.

traces hiding prefix Environment Variable

see section 4.7.2 for a detailed description.

traces regexp Environment Variable

see section 4.7.2 for a detailed description.

4.6 Execution Commands
In this section we describe the commands that allow to perform trace re-execution on a given model. See also the
section Section 4.7 [Traces], page 97 that describes the commands available for manipulating traces.

execute traces - Executes complete traces on the model FSM Command

Copyright ©2019 by FBK. 96

nuXmv 2.0.0 User Manual

execute traces [-h] [-v] [-m | -o output-file] -e engine [-a |
trace number]

Executes traces stored in the Trace Manager. If no trace is specified, last registered trace is executed. Traces
must be complete in order to perform execution.

Command Options:

-v Verbosely prints traces execution steps.
-a Prints all the currently stored traces.
-m Pipes the output through the program specified by the PAGER shell variable

if defined, else through the UNIX command “more”.
-o output-file Writes the output generated by the command to output-file.
-e engine Selects an engine for trace re-execution. It must be one of ’bdd’, ’sat’ or

’smt’.
trace number The (ordinal) identifier number of the trace to be printed. This must be the

last argument of the command. Omitting the trace number causes the most
recently generated trace to be executed.

execute partial traces - Executes partial traces on the model FSM Command

execute partial traces [-h] [-v] [-r] [-m | -o output-file] -e engine
[-a | trace number]

Executes traces stored in the Trace Manager. If no trace is specified, last registered trace is executed. Traces
are not required to be complete. Upon succesful termination, a new complete trace is registered in the Trace
Manager.

Command Options:

-v Verbosely prints traces execution steps.
-a Prints all the currently stored traces.
-r Performs restart on complete states. When a complete state (i.e. a state

which is non-ambiguosly determined by a complete assignment to state vari-
ables) is encountered, the re-execution algorithm is re-initialized, thus reduc-
ing computation time.

-m Pipes the output through the program specified by the PAGER shell variable
if defined, else through the UNIX command “more”.

-o output-file Writes the output generated by the command to output-file.
-e engine Selects an engine for trace re-execution. It must be one of ’bdd’, ’sat’ or

’smt’.
trace number The (ordinal) identifier number of the trace to be printed. This must be the

last argument of the command. Omitting the trace number causes the most
recently generated trace to be executed.

4.7 Traces
A trace consists of an initial state, optionally followed by a sequence of states-inputs pairs corresponding to
a possible execution of the model. Apart, from the initial state, each pair contains the inputs that caused the
transition to the new state, and the new state itself. The initial state has no such input values defined as it does
not depend on the values of any of the inputs. The values of any constants declared in DEFINE sections are also

Copyright ©2019 by FBK. 97

nuXmv 2.0.0 User Manual

part of a trace. If the value of a constant depends only on state and frozen variables then it will be treated as if
it is a state variable too. If it depends only on input variables then it will be treated as if it is an input variable.
If however, a constant depends upon both input and state/frozen variables and/or NEXTed state variables, then it
gets displayed in a separate “combinatorial” section. Since the values of any such constants depend on one or
more inputs, the initial state does not contain this section either.

Traces are created by NUXMV when a formula is found to be false; they are also generated as a result of a
simulation (Section 4.5 [Simulation Commands], page 94) or partial trace re-execution (Section 4.6 [Execution
Commands], page 96). Each trace has a number, and the states-inputs pairs are numbered within the trace. Trace
n has states/inputs n.1, n.2, n.3, ”...” where n.1 represents the initial state.

When Cone of Influence (COI) is enabled when generating a trace (e.g. when performing model checking), the
generated trace will contain only the relevant symbols (variables and DEFINEs) which are in the COI projected
by the variables occurring in the property which is being checked. The symbols which are left out of the COI, will
be not visible in the generated trace, as they do not occur in the problem encoded in the solving engine. Notice
that when COI is enabled, the generated trace may or may not be a valid counter-example trace for the original
model.

4.7.1 Inspecting Traces
The trace inspection commands of NUXMV allow for navigation along the labelled states-inputs pairs of the traces
produced. During the navigation, there is a current state, and the current trace is the trace the current state belongs
to. The commands are the following:

goto state - Goes to a given state of a trace Command

goto state [-h] state label

Makes state label the current state. This command is used to navigate along traces produced by
NUSMV. During the navigation, there is a current state, and the current trace is the trace the current state
belongs to.

state label is in the form trace.state where

trace is the index of the trace which the state has to be taken from.

state is the index of the state within the given trace. If state is a negative number, then the state index is
intended to be relative to the length of the given trace. For example 2.-1 means the last state of the
trace 2. 2.-2 is the state before the last state, etc.

print current state - Prints out the current state Command

print current state [-h] [-v]

Prints the name of the current state if defined.

Command Options:

-v Prints the value of all the state and frozen variables of the current state.

4.7.2 Displaying Traces
NUXMV comes with three trace plugins (see Section 4.8 [Trace Plugins], page 101) which can be used to display
traces in the system. Once a trace has been generated by NUXMV it is printed to stdout using the trace explana-
tion plugin which has been set as the current default. The command show traces (see Section 4.5 [Simulation

Copyright ©2019 by FBK. 98

nuXmv 2.0.0 User Manual

Commands], page 94) can then be used to print out one or more traces using a different trace plugin, as well as
allowing for output to a file.

Generation and displaying of traces can be enabled/disabled by setting variable counter examples.
Some filtering of symbols that are presented when showing traces can be controlled by variables
traces hiding prefix and traces regexp.

counter examples Environment Variable

This determines whether traces are generated when needed. See also command line option -dcx.

traces hiding prefix Environment Variable

Symbols names that match this string prefix will be not printed out when showing a trace. This variable may
be used to avoid displaying symbols that are expected to be not visible to the user. For example, this variable
is exploited when dumping booleanized models, as NUXMV may introduce hidden placeholding symbols as
DEFINES that do not carry any useful information for the user, and that would make traces hardly readable
if printed. Default is

traces regexp Environment Variable

Only symbols whose names match this regular expression will be printed out when showing a trace. This
option might be used by users that are interested in showing only some symbol names. Names are first
filtered out by applying matching of the dual variable traces hiding prefix, and then filtered names
are checked against content of traces regexp. Given regular expression can be a Posix Basic Regular
Expression. Matching is carried out on symbol names without any contextual information, like module
hierarchy. For example in m1.m2.name only name is checked for filtering.

Notice that depending on the underlaying platform and operating system this variable might be not available.

show defines in traces Environment Variable

Controls whether defines should be printed as part of a trace or be skipped. Skipping printing of the defines
can help in reducing time and memory usage required to build very big traces.

traces show defines with next Environment Variable

Controls whether defines containing next operators should be printed as part of a trace or be skipped.

4.7.3 Trace Plugin Commands
The following commands relate to the plugins which are available in NUXMV.

show plugins - Shows the available trace explanation plugins Command

show plugins [-h] [-n plugin-no | -a]

Command Options:

-n plugin-no Shows the plugin with the index number equal to plugin-no.
-a Shows all the available plugins.

Shows the available plugins that can be used to display a trace which has been generated by NUSMV, or that
has been loaded with the read trace command. The plugin that is used to read in a trace is also shown.
The current default plugin is marked with “[D]”.

Copyright ©2019 by FBK. 99

nuXmv 2.0.0 User Manual

All the available plugins are displayed by default if no command options are given.

default trace plugin Environment Variable

This determines which trace plugin will be used by default when traces that are generated by NUXMV are
to be shown. The values that this variable can take depend on which trace plugins are installed. Use the
command show plugins to see which ones are available. The default value is 0.

show traces - Shows the traces generated in a NuSMV session Command

show traces [-h] [-v] [-t] [-A] [-m | -o output-file]
[-p plugin-no] [-a | trace number[.from state[:[to state]]]]

Command Options:

-v Verbosely prints traces content (all state and frozen variables, otherwise it
prints out only those variables that have changed their value from previous
state). This option only applies when the Basic Trace Explainer plugin is
used to display the trace.

-t Prints only the total number of currently stored traces.
-a Prints all the currently stored traces.
-m Pipes the output through the program specified by the PAGER shell variable

if defined, else through the UNIX command “more”.
-o output-file Writes the output generated by the command to output-file. If -a is also

specified, then each trace is stored in a separate file named ”num output-file”
where num is the trace number.

-p plugin-no Uses the specified trace plugin to display the trace.
trace number The (ordinal) identifier number of the trace to be printed. Omitting the trace

number causes the most recently generated trace to be printed.
from step The number of the first step of the trace to be printed. Negative numbers can

be used to denote right-to-left indexes from the last step.
to step The number of the trace to be printed. Negative numbers can be used to de-

note right-to-left indexes from the last step. Omitting this parameter causes
the entire suffix of the trace to be printed.

-A Prints the trace(s) using a rewriting mapping for all symbols. The rewriting
is the same used in write flat model with option -A.

Shows the traces currently stored in system memory, if any. By default it shows the last generated trace, if
any. Optional trace number can be followed by two indexes (from state, to state), denoting a trace “slice”.
Thus, it is possible to require printout only of an arbitrary fragment of the trace (this can be helpful when
inspecting very big traces).

read trace - Loads a previously saved trace Command

read trace [-h | [-i filename] [-u] [-s] filename]

Command Options:

-i filename Reads in a trace from the specified file. Note that the file must only con-
tain one trace. This option has been deprecated. Use the explicit filename
argument instead.

Copyright ©2019 by FBK. 100

nuXmv 2.0.0 User Manual

-u Turns “undefined symbol” error into a warning. The loader will ignore as-
signments to undefined symbols.

-s Turns “wrong section” error into a warning. The loader will accept symbol
assignment even if they are in a different section than expected. Assignments
will be silently moved to appropriate section, i.e. misplaced assignments to
state symbols will be moved back to previous state section and assignments
to input/combinatorial symbols will be moved forward to successive input/-
combinatorial section. Such a way if a variable in a model was input and
became state or vice versa the existing traces still can be read and executed.

Loads a trace which has been previously output to a file with the XML Format Output plugin. The model
from which the trace was originally generated must be loaded and built using the command “go” first.
Please note that this command is only available on systems that have the libxml2 XML parser library in-
stalled.

4.8 Trace Plugins
NUXMV comes with three plugins which can be used to display a trace that has been generated:

Basic Trace Explainer
States/Variables Table
XML Format Printer
Empty Trace

There is also an XML loader which can read in any trace which has been output to a file by the XML Format
Printer. Note however that this loader is only available on systems that have the libxml2 XML parser library
installed.

Once a trace has been generated it is output to stdout using the currently selected plugin. The command
show traces can be used to output any previuosly generated, or loaded, trace to a specific file.

4.8.1 Basic Trace Explainer
This plugin prints out each state (the current values of the variables) in the trace, one after the other. The initial
state contains all the state and frozen variables and their initial values. States are numbered in the following
fashion:

trace number.state number

There is the option of printing out the value of every variable in each state, or just those which have changed
from the previous one. The one that is used can be chosen by selecting the appropriate trace plugin. The values
of any constants which depend on both input and state or frozen variables are printed next. It then prints the set
of inputs which cause the transition to a new state (if the model contains inputs), before actually printing the new
state itself. The set of inputs and the subsequent state have the same number associated to them.

In the case of a looping trace, if the next state to be printed is the same as the last state in the trace, a line is
printed stating that this is the point where the loop begins.

With the exception of the initial state, for which no input values are printed, the output syntax for each state is
as follows:

-> Input: TRACE_NO.STATE_NO <-
/* for each input var (being printed), i: */
INPUT_VARi = VALUE

-> State: TRACE_NO.STATE_NO <-
/* for each state and frozen var (being printed), j: */

Copyright ©2019 by FBK. 101

nuXmv 2.0.0 User Manual

STATE_VARj = VALUE
/* for each combinatorial constant (being printed), k: */
CONSTANTk = VALUE

where INPUT VAR, STATE VAR and CONSTANT have the relevant module names prepended to them (seper-
ated by a period) with the exception of the module “main” .

The version of this plugin which only prints out those variables whose values have changed is the initial default
plugin used by NUXMV.

4.8.2 States/Variables Table
This trace plugin prints out the trace as a table, with the states on each row, or in each column, or in a compact
way. The entries along the state axis are:

S1 C2 I2 S2 ... Cn In Sn

where S1 is the initial state, and Ii gives the values of the input variables which caused the transition from
state Si−1 to state Si. Ci gives the values of any combinatorial constants, where the value depends on the values
of the state or frozen variables in state Si−1 and the values of input variables in state Si.

The variables in the model are placed along the other axis. Only the values of state and frozen variables are
displayed in the State row/column, only the values of input variables are displayed in the Input row/column and
only the values of combinatorial constants are displayed in the Constants row/column. All remaining cells have
’-’ displayed.

The compact version has the states on the rows and no distinction is made between variables:

Step1 Step2 ... Stepn

4.8.3 XML Format Printer
This plugin prints out the trace either to stdout or to a specified file using the command show traces. If
traces are to be output to a file with the intention of them being loaded again at a later date, then each trace must
be saved in a separate file. This is because the XML Reader plugin does not currently support multiple traces per
file.
The format of a dumped XML trace file is as follows:

<?XML_VERSION_STRING?>
<counter-example type=TRACE_TYPE desc=TRACE_DESC>

/* for each state, i: */
<node>

<state id=i>

/* for each state and frozen var, j: */
<value variable=j>VALUE</value>

</state>
<combinatorial id=i+1>

/* for each combinatorial constant, k: */
<value variable=k>VALUE</value>

</combinatorial>
<input id=i+1>

/* for each input var, l: */
<value variable=l>VALUE</value>

Copyright ©2019 by FBK. 102

nuXmv 2.0.0 User Manual

</input>
</node>

</counter-example>

Note that for the last state in the trace, there is no input section in the node tags. This is because the inputs
section gives the new input values which cause the transition to the next state in the trace. There is also no
combinatorial section as this depends on the values of the inputs and are therefore undefined when there are no
inputs.

4.8.4 XML Format Reader
This plugin makes use of the libxml2 XML parser library and as such can only be used on systems where this
library is available. Previously generated traces for a given model can be loaded using this plugin provided that
the original model file1 has been loaded, and built using the command go.

When a trace is loaded, it is given the smallest available trace number to identify it. It can then be manipulated
in the same way as any generated trace.

4.8.5 Empty Trace
This plugin simply disables trace printing. Traces are still computed and stored: unset system option
counter examples for performance gain if traces are of no interest.

4.9 Interface to the DD Package
NUXMV uses the state of the art BDD package CUDD [Som98]. Control over the BDD package can be very
important to tune the performance of the system. In particular, the order of variables is critical to control the
memory and the time required by operations over BDDs. Reordering methods can be activated to determine better
variable orders, in order to reduce the size of the existing BDDs.

Reordering of the variables can be triggered in two ways: by the user, or by the BDD package. In the first way,
reordering is triggered by the interactive shell command dynamic var ordering with the -f option.

Reordering is triggered by the BDD package when the number of nodes reaches a given threshold. The
threshold is initialized and automatically adjusted after each reordering by the package. This is called dynamic
reordering, and can be enabled or disabled by the user. Dynamic reordering is enabled with the shell command
dynamic var ordering with the option -e, and disabled with the -d option. Variable dynamic reorder
can also be used to determine whether dynamic reordering is active. If dynamic reordering is enabled it may be
beneficial also to disable BDD caching by unsetting variable enable sexp2bdd caching.

dynamic reorder Environment Variable

Determines whether dynamic reordering is active. If this variable is set, dynamic reordering will take place
as described above. If not set (default), no dynamic reordering will occur. This variable can also be set by
passing -dynamic command line option when invoking NUXMV.

reorder method Environment Variable

Specifies the ordering method to be used when dynamic variable reordering is fired. The possible values,
corresponding to the reordering methods available with the CUDD package, are listed below. The default
value is sift.

1To be exact, M1 ⊆ M2, where M1 is the model from which the trace was generated, and M2 is the currently loaded, and built, model.
Note however, that this may mean that the trace is not valid for the model M2.

Copyright ©2019 by FBK. 103

nuXmv 2.0.0 User Manual

sift: Moves each variable throughout the order to find
an optimal position for that variable (assuming all
other variables are fixed). This generally achieves
greater size reductions than the window method, but
is slower.

random: Pairs of variables are randomly chosen, and swapped
in the order. The swap is performed by a series of
swaps of adjacent variables. The best order among
those obtained by the series of swaps is retained.
The number of pairs chosen for swapping equals the
number of variables in the diagram.

random pivot: Same as random, but the two variables are chosen
so that the first is above the variable with the largest
number of nodes, and the second is below that vari-
able. In case there are several variables tied for the
maximum number of nodes, the one closest to the
root is used.

sift converge: The sift method is iterated until no further im-
provement is obtained.

symmetry sift: This method is an implementation of symmetric sift-
ing. It is similar to sifting, with one addition: Vari-
ables that become adjacent during sifting are tested
for symmetry. If they are symmetric, they are linked
in a group. Sifting then continues with a group being
moved, instead of a single variable.

symmetry sift converge: The symmetry sift method is iterated until no
further improvement is obtained.

window2:
window3:
window4: Permutes the variables within windows of n adjacent

variables, where n can be either 2, 3 or 4, so as to
minimize the overall BDD size.

window2 converge:
window3 converge:
window4 converge: The window{2,3,4} method is iterated until no

further improvement is obtained.
group sift: This method is similar to symmetry sift, but

uses more general criteria to create groups.
group sift converge: The group siftmethod is iterated until no further

improvement is obtained.
annealing: This method is an implementation of simulated an-

nealing for variable ordering. This method is poten-
tially very slow.

Copyright ©2019 by FBK. 104

nuXmv 2.0.0 User Manual

genetic: This method is an implementation of a genetic algo-
rithm for variable ordering. This method is poten-
tially very slow.

exact: This method implements a dynamic programming
approach to exact reordering. It only stores one BDD
at a time. Therefore, it is relatively efficient in terms
of memory. Compared to other reordering strategies,
it is very slow, and is not recommended for more than
16 boolean variables.

linear: This method is a combination of sifting and linear
transformations.

linear conv: The linear method is iterated until no further im-
provement is obtained.

dynamic var ordering - Deals with the dynamic variable ordering. Command

dynamic var ordering [-d] [-e <method>] [-f <method>] [-h]

Controls the application and the modalities of (dynamic) variable ordering. Dynamic ordering is a technique
to reorder the BDD variables to reduce the size of the existing BDDs. When no options are specified, the
current status of dynamic ordering is displayed. At most one of the options -e, -f, and -d should be
specified. Dynamic ordering may be time consuming, but can often reduce the size of the BDDs dramat-
ically. A good point to invoke dynamic ordering explicitly (using the -f option) is after the commands
build model, once the transition relation has been built. It is possible to save the ordering found using
write order in order to reuse it (using build model -i order-file) in the future.

Command Options:

-d Disable dynamic ordering from triggering automatically.
-e <method> Enable dynamic ordering to trigger automatically whenever a certain thresh-

old on the overall BDD size is reached. <method> must be one of the fol-
lowing:
• sift: Moves each variable throughout the order to find an optimal position

for that variable (assuming all other variables are fixed). This generally
achieves greater size reductions than the window method, but is slower.
• random: Pairs of variables are randomly chosen, and swapped in the order.

The swap is performed by a series of swaps of adjacent variables. The best
order among those obtained by the series of swaps is retained. The number
of pairs chosen for swapping equals the number of variables in the diagram.
• random pivot: Same as random, but the two variables are chosen so that

the first is above the variable with the largest number of nodes, and the
second is below that variable. In case there are several variables tied for
the maximum number of nodes, the one closest to the root is used.
• sift converge: The sift method is iterated until no further improvement is

obtained.
• symmetry sift: This method is an implementation of symmetric sifting.

It is similar to sifting, with one addition: Variables that become adjacent
during sifting are tested for symmetry. If they are symmetric, they are
linked in a group. Sifting then continues with a group being moved, instead
of a single variable.

Copyright ©2019 by FBK. 105

nuXmv 2.0.0 User Manual

• symmetry sift converge: The symmetry sift method is iterated until no
further improvement is obtained.
• window{2,3,4}: Permutes the variables within windows of ”n” adjacent

variables, where ”n” can be either 2, 3 or 4, so as to minimize the overall
BDD size.
• window{2,3,4} converge: The window{2,3,4}method is iterated until no

further improvement is obtained.
• group sift: This method is similar to symmetry sift, but uses more general

criteria to create groups.
• group sift converge: The group sift method is iterated until no further

improvement is obtained.
• annealing: This method is an implementation of simulated annealing for

variable ordering. This method is potentially very slow.
• genetic: This method is an implementation of a genetic algorithm for vari-

able ordering. This method is potentially very slow.
• exact: This method implements a dynamic programming approach to ex-

act reordering. It only stores a BDD at a time. Therefore, it is relatively
efficient in terms of memory. Compared to other reordering strategies, it is
very slow, and is not recommended for more than 16 boolean variables.
• linear: This method is a combination of sifting and linear transformations.
• linear converge: The linear method is iterated until no further improve-

ment is obtained.
-f <method> Force dynamic ordering to be invoked immediately. The values for

<method> are the same as in option -e.

clean sexp2bdd cache - Cleans the cached results of evaluations of symbolic
expressions to ADD and BDD representations.

Command

clean sexp2bdd cache [-h]

During conversion of symbolic expressions to ADD and BDD representations the results of evaluations are
normally cached (see additionally the environment variable enable sexp2bdd caching). This allows
to save time by avoid the construction of BDD for the same symbolic expression several time.

In some situations it may be preferable to clean the cache and free collected ADD and BDD. This operation
can be done, for example, to free some memory. Another possible reason is that dynamic reordering may
modify all existing BDDs, and cleaning the cache thereby freeing the BDD may speed up the reordering.

This command is designed specifically to free the internal cache of evaluated expressions and their ADDs
and BDDs. Note that only the cache of symbolic-expression-to-bdd evaluator is freed. BDDs of variables,
constants and expressions collected in BDD FSM or anywhere else are not freed.

print formula - Prints a formula in canonical format. Command

print formula [-h] [-v] [-f] "simple expression"

Prints the number of satisfying assignments for the given simple expression. In verbose mode, prints also
the list of such assigments. In formula mode, a canonical representation of the simple expression is printed.

Command Options:

-v Prints explicit models of the given simple expression.
-f Prints the simplified and canonical simple expression.

enable sexp2bdd caching Environment Variable

Copyright ©2019 by FBK. 106

nuXmv 2.0.0 User Manual

This variable determines if during evaluation of symbolic expression to ADD and BDD representations the
obtained results are cached or not. Note that if the variable is set down consequently computed results are
not cached but the previously cached data remain unmodified and will be used during later evaluations.

The default value of this variable is 1 which can be changed by a command line option
-disable sexp2bdd caching.

For more information about the reasons of why BDD cache should be disabled in some situations see com-
mand clean sexp2bdd cache.

print bdd stats - Prints out the BDD statistics and parameters Command

print bdd stats [-h]

Prints the statistics for the BDD package. The amount of information depends on the BDD package config-
uration established at compilation time. The configurtion parameters are printed out too. More information
about statistics and parameters can be found in the documentation of the CUDD Decision Diagram package.

set bdd parameters - Creates a table with the value of all currently active
NuSMV flags and change accordingly the configurable parameters of the BDD
package.

Command

set bdd parameters [-h] [-s]

Applies the variables table of the NUSMV environnement to the BDD package, so the user can set specific
BDD parameters to the given value. This command works in conjunction with the print bdd stats
and set commands. print bdd stats first prints a report of the parameters and statistics of the current
bdd manager. By using the command set, the user may modify the value of any of the parameters of the
underlying BDD package. The way to do it is by setting a value in the variable BDD.parameter name
where parameter name is the name of the parameter exactly as printed by the print bdd stats
command.

Command Options:

-s Prints the BDD parameter and statistics after the modification.

4.10 Administration Commands
This section describes the administrative commands offered by the interactive shell of NUXMV.

! - shell command Command

“! ” executes a shell command. The “shell command” is executed by calling “bin/sh -c shell command”. If
the command does not exists or you have not the right to execute it, then an error message is printed.

alias - Provides an alias for a command Command

alias [-h] [<name> [<string>]]

The alias command, if given no arguments, will print the definition of all current aliases. Given a single
argument, it will print the definition of that alias (if any). Given two arguments, the keyword <name>

becomes an alias for the command string <string>, replacing any other alias with the same name.

Copyright ©2019 by FBK. 107

nuXmv 2.0.0 User Manual

Command Options:

<name> Alias
<string> Command string

It is possible to create aliases that take arguments by using the history substitution mechanism. To protect
the history substitution character ‘ %’ from immediate expansion, it must be preceded by a ‘ \’ when entering
the alias.

For example:

nuXmv > alias read "read model -i %:1.smv ; set input order file %:1.ord"

nuXmv > read short

will create an alias ‘read’, execute ”read model -i short.smv; set input order file short.ord”. And again:
nuXmv > alias echo2 "echo Hi ; echo %* !"
nuXmv > echo2 happy birthday
will print:
Hi
happy birthday !
CAVEAT: Currently there is no check to see if there is a circular dependency in the alias definition. e.g.
nuXmv > alias foo "echo print bdd stats; foo"
creates an alias which refers to itself. Executing the command foo will result an infinite loop during which
the command print bdd stats will be executed.

echo - Merely echoes the arguments Command

echo [-h] [-2] [-n] [-o filename [-a]] <string>

Echoes the specified string either to standard output, or to filename if the option -o is specified.

Command Options:

-2 Redirects output to the standard error instead of the standard output. This
cannot be used in combination with the option -o.

-n Does not output the trailing newline.
-o filename Echoes to the specified filename instead of to standard output. If the op-

tion -a is not specified, the file filename will be overwritten if it already
exists.

-a Appends the output to the file specified by option -o, instead of overwritting
it. Use only with the option -o.

help - Provides on-line information on commands Command

help [-h] [-a] [-p] [<command>]

If invoked with no arguments help prints the list of all commands known to the command interpreter. If a
command name is given, detailed information for that command will be provided.

Command Options:

-a Provides a list of all internal commands, whose names begin with the under-
score character (’ ’) by convention.

Copyright ©2019 by FBK. 108

nuXmv 2.0.0 User Manual

-p Disables the use of a pager like “more” or any set in environment variable
PAGER.

history - list previous commands and their event numbers Command

history [-h] [<num>]

Lists previous commands and their event numbers. This is a UNIX-like history mechanism inside the
NUSMV shell.

Command Options:

<num> Lists the last <num> events. Lists the last 30 events if <num> is not speci-
fied.

History Substitution:
The history substitution mechanism is a simpler version of the csh history substitution mechanism. It enables
you to reuse words from previously typed commands.

The default history substitution character is the ‘%’ (‘!’ is default for shell escapes, and ‘#’ marks the
beginning of a comment). This can be changed using the set command. In this description ’%’ is used as
the history char. The ‘%’ can appear anywhere in a line. A line containing a history substitution is echoed
to the screen after the substitution takes place. ‘%’ can be preceded by a ‘ı́n order to escape the substitution,
for example, to enter a ‘%’ into an alias or to set the prompt.

Each valid line typed at the prompt is saved. If the history variable is set (see help page for set), each
line is also echoed to the history file. You can use the history command to list the previously typed
commands.

Substitutions:
At any point in a line these history substitutions are available.

Command Options:

%:0 Initial word of last command.
%:n n-th argument of last command.
%$ Last argument of last command.
%* All but initial word of last command.
%% Last command.
%stuf Last command beginning with “stuf”.
%n Repeat the n-th command.
%-n Repeat the n-th previous command.̂old̂new Replace “old” with “new” in previous command. Trailing spaces are signif-

icant during substitution. Initial spaces are not significant.

print usage - Prints processor and BDD statistics. Command

print usage [-h]

Prints a formatted dump of processor-specific usage statistics, and BDD usage statistics. For Berkeley Unix,
this includes all of the information in the getrusage() structure.

quit - exits NuSMV Command

Copyright ©2019 by FBK. 109

nuXmv 2.0.0 User Manual

quit [-h] [-s] [-x]

Stops the program. Does not save the current network before exiting.

Command Options:

-s Frees all the used memory before quitting. This is slower, and it is used for
finding memory leaks.

-x Leaves immediately. Skip all the cleanup code, leaving it to the OS. This
can save quite a long time.

reset - Resets the whole system. Command

reset [-h]

Resets the whole system, in order to read in another model and to perform verification on it.

set - Sets an environment variable Command

set [-h] [<name>] [<value>]

A variable environment is maintained by the command interpreter. The set command sets a variable
to a particular value, and the unset command removes the definition of a variable. If set is given no
arguments, it prints the current value of all variables.

Command Options:

<name> Variable name
<value> Value to be assigned to the variable.

Using the set command to set a variable, without giving any explicit value is allowed, and sets the variable
to 1:
nuXmv > set foo

will set the variable foo to 1.

Interpolation of variables is allowed when using the set command. The variables are referred to with the
prefix of ’$’. So for example, what follows can be done to check the value of a set variable:
nuXmv > set foo bar

nuXmv > echo $foo

bar

The last line “bar” will be the output produced by NUSMV. Variables can be extended by using the
character ‘:’ to concatenate values. For example:
nuXmv > set foo bar

nuXmv > set foo $foo:foobar

nuXmv > echo $foo

bar:foobar

Copyright ©2019 by FBK. 110

nuXmv 2.0.0 User Manual

The variable foo is extended with the value foobar . Whitespace characters may be present within
quotes. However, variable interpolation lays the restriction that the characters ’:’ and ’/’ may not be used
within quotes. This is to allow for recursive interpolation. So for example, the following is allowed
nuXmv > set "foo bar" this

nuXmv > echo $"foo bar"

this

The last line will be the output produced by NUSMV.

But in the following, the value of the variable foo/bar will not be interpreted correctly: nuXmv > set

"foo/bar" this

nuXmv > echo $"foo/bar"

foo/bar

If a variable is not set by the set command, then the variable is returned unchanged. Different commands
use environment information for different purposes. The command interpreter makes use of the following
parameters:

Command Options:

autoexec Defines a command string to be automatically executed after every command
processed by the command interpreter. This is useful for things like timing
commands, or tracing the progress of optimization.

open path “open path” (in analogy to the shell-variable PATH) is a list of colon-
separated strings giving directories to be searched whenever a file is opened
for read. Typically the current directory (.) is the first item in this list. The
standard system library (typically NUXMV LIBRARY PATH) is always im-
plicitly appended to the current path. This provides a convenient short-hand
mechanism for reaching standard library files.

nusmv stderr Standard error (normally (stderr)) can be re-directed to a file by setting the
variable nusmv stderr.

nusmv stdout Standard output (normally (stdout)) can be re-directed to a file by setting
the variable nusmv stdout.

source - Executes a sequence of commands from a file Command

source [-h] [-p] [-s] [-x] <file> [<args>]

Reads and executes commands from a file.

Command Options:

-p Prints a prompt before reading each command.
-s Silently ignores an attempt to execute commands from a nonexistent file.
-x Echoes each command before it is executed.
<file> File name.

Arguments on the command line after the filename are remembered but not evaluated. Commands in the
script file can then refer to these arguments using the history substitution mechanism. EXAMPLE:
Contents of test.scr:

Copyright ©2019 by FBK. 111

nuXmv 2.0.0 User Manual

read model -i %:2

flatten hierarchy

build variables

build model

compute fairness

Typing source test.scr short.smv on the command line will execute the sequence

read model -i short.smv

flatten hierarchy

build variables

build model

compute fairness

(In this case %:0 gets source, %:1 gets test.scr, and %:2 gets short.smv.) If you type
alias st source test.scr and then type st short.smv bozo, you will execute

read model -i bozo

flatten hierarchy

build variables

build model

compute fairness

because bozo was the second argument on the last command line typed. In other words, command
substitution in a script file depends on how the script file was invoked. Switches passed to a command are
also counted as positional parameters. Therefore, if you type st -x short.smv bozo, you will execute

read model -i short.smv

flatten hierarchy

build variables

build model

compute fairness

To pass the -x switch (or any other switch) to source when the script uses positional parameters,
you may define an alias. For instance, alias srcx source -x.

See the variable on failure script quits for further information.

time - Provides a simple CPU elapsed time value Command

time [-h]

Prints the processor time used since the last invocation of the time command, and the total processor time
used since NUSMV was started.

unalias - Removes the definition of an alias. Command

unalias [-h] <alias-names>

Removes the definition of an alias specified via the alias command.

Command Options:

Copyright ©2019 by FBK. 112

nuXmv 2.0.0 User Manual

<alias-names> Aliases to be removed

Copyright ©2019 by FBK. 113

nuXmv 2.0.0 User Manual

unset - Unsets an environment variable Command

unset [-h] <variables>

A variable environment is maintained by the command interpreter. The set command sets a variable to a
particular value, and the unset command removes the definition of a variable.

Command Options:

<variables> Variables to be unset.

usage - Provides a dump of process statistics Command

usage [-h]

Prints a formatted dump of processor-specific usage statistics. For Berkeley Unix, this includes all of the
information in the getrusage() structure.

which - Looks for a file called ”file name” Command

which [-h] <file name>

Looks for a file in a set of directories which includes the current directory as well as those in the NUSMV
path. If it finds the specified file, it reports the found file’s path. The searching path is specified through the
set open path command in .nusmvrc.

Command Options:

<file name> File to be searched

4.11 Other Environment Variables
The behavior of the system depends on the value of some environment variables. For instance, an environment
variable specifies the partitioning method to be used in building the transition relation. The value of environment
variables can be inspected and modified with the “set” command. Environment variables can be either logical or
utility.

autoexec Environment Variable

Defines a command string to be automatically executed after every command processed by the command
interpreter. This may be useful for timing commands, or tracing the progress of optimization.

on failure script quits Environment Variable

When a non-fatal error occurs during the interactive mode, the interactive interpreter simply stops the cur-
rently executed command, prints the reason of the problem, and prompts for a new command. When set, this
variables makes the command interpreter quit when an error occur, and then quit NUXMV. This behaviour
might be useful when the command source is controlled by either a system pipe or a shell script. Under
these conditions a mistake within the script interpreted by source or any unexpected error might hang the
controlling script or pipe, as by default the interpreter would simply give up the current execution, and wait
for further commands. The default value of this environment variable is 0.

Copyright ©2019 by FBK. 114

nuXmv 2.0.0 User Manual

filec Environment Variable

Enables file completion a la “csh”. If the system has been compiled with the “readline” library, the user is
able to perform file completion by typing the <TAB> key (in a way similar to the file completion inside the
“bash” shell). If the system has not been compiled with the “readline” library, a built-in method to perform
file completion a la “csh” can be used. This method is enabled with the ‘set filec’ command. The “csh”
file completion method can be also enabled if the “readline” library has been used. In this case the features
offered by “readline” will be disabled.

shell char Environment Variable

shell char specifies a character to be used as shell escape. The default value of this environment variable
is ‘!’.

history char Environment Variable

history char specifies a character to be used in history substitutions. The default value of this environ-
ment variable is ‘%’.

open path Environment Variable

open path (in analogy to the shell-variable PATH) is a list of colon-separated strings giving directories to
be searched whenever a file is opened for read. Typically the current directory (.) is first in this list. The
standard system library (NUXMV LIBRARY PATH) is always implicitly appended to the current path. This
provides a convenient short-hand mechanism for reaching standard library files.

nusmv stderr Environment Variable

Standard error (normally stderr) can be re-directed to a file by setting the variable nusmv stderr.

nusmv stdout Environment Variable

Standard output (normally stdout) can be re-directed to a file by setting the internal variable
nusmv stdout.

nusmv stdin Environment Variable

Standard input (normally stdin) can be re-directed to a file by setting the internal variable nusmv stdin.

Copyright ©2019 by FBK. 115

nuXmv 2.0.0 User Manual

Chapter 5

Commands of NUXMV

In the following we present the new commands provided by NUXMV. Similarly to the case of the commands
inherited from NUSMV, we also describe the environment variables that may affect the behavior of the commands.
All the commands have been classified in different categories.

5.1 Commands for Initialization

go msat - Initializes the system for the infinite state verification via SMT. Command

go msat [-h] [-f]

This command initializes the system for verification of finite and infinite state systems. It is equivalent to a
series of internal commands. If some commands have already been executed, then only the remaining ones
will be invoked.

Command Options:

-f Forces model construction even when Cone Of Influence is enabled.

5.2 Commands for Model Simulation
In this section we describe the new commands that allow to simulate a NUXMV specification that may contains
Integers and Reals. See also the section Section 4.7 [Traces], page 97 that describes the commands available for
manipulating traces.

msat pick state - Picks a state from the set of initial states Command [I]

msat pick state [-h] [-v] [-i [-a]] [-c "constraint" | -s trace.state]

Chooses an element from the set of initial states, and makes it the current state (replacing the old one).
The chosen state is stored as the first state of a new trace ready to be lengthened by steps states by the
simulate command. The state can be chosen according to different policies which can be specified via
command line options. By default the state is chosen in a deterministic way.

Copyright ©2019 by FBK. 116

nuXmv 2.0.0 User Manual

Command Options:

-v Verbosely prints out chosen state (all state and frozen variables, otherwise it
prints out only the label t.1 of the state chosen, where t is the number of
the new trace, that is the number of traces so far generated plus one).

-i Enables the user to interactively pick up an initial state. The user is requested
to choose a state from a list of possible items (every item in the list doesn’t
show frozen and state variables unchanged with respect to a previous item).
If the number of possible states is too high, then the user has to specify some
further constraints as “simple expression”.

-a Displays all state and frozen variables (changed and unchanged with respect
to a previous item) in an interactive picking. This option works only if the
-i options has been specified.

-c "constraint" Uses constraint to restrict the set of initial states in which the state has to
be picked. constraints must be enclosed between double quotes " ".

-s trace.state Picks state from trace.state label. A new simulation trace will be created by
copying prefix of the source trace up to specified state.

msat simulate - Generates a trace of the model from 0 (zero) to k Command [I]

msat simulate [-h] [-v] [-i [-a]] [-e] [-l] [-k length] [[-c
"simple expr"] | [-t "next expr"] | [-p "formula"]]

msat simulate does not require a specification to build the problem, because only the model is used to
build it. The problem length is represented by the -k command parameter, or by its default value stored in
the environment variable bmc length.

Command Options:

-v Prints the generated trace (all variables).
-e Extends the previous simulation if any. Option -p below cannot be specified

in conjunction with this option.
-l Performs look-ahead while doing the simulation to see whether the trace can

be extended, thus trying to bump in possible deadlocks.
-i Enables the user to interactively pick up a next state.
-c simple expr Performs a simulation in which computation is restricted to states satisfy-

ing those simple expr. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps trace is obtained. Note:
simple expr must be enclosed between double quotes " ". The expression
cannot contain next operators, and is automatically shifted by one state in
order to constraint only the next steps

Copyright ©2019 by FBK. 117

nuXmv 2.0.0 User Manual

-t next expr Performs a simulation in which computation is restricted to states satisfying
those next expr. The desired sequence of states could not exist if such
next expr was too strong or it may happen that at some point of the simula-
tion a future state satisfying that next expr doesn’t exist: in that case a trace
with a number of states less than steps trace is obtained. Note: next expr

must be enclosed between double quotes " ". The expression can contain
next operators, and is NOT automatically shifted by one state as done with
option -c

-p "formula" Performs a simulation in which computation is restricted to states satisfying
the given LTL formula. Option -e cannot be used in conjunction with this
option.

-k length Maximum length of the path according to the constraints. The length of a
trace could contain less than length states: this is the case in which sim-
ulation stops in an intermediate step because it may not exist any future
state satisfying those constraints. The default value is determined by the
default simulation steps environment variable

5.3 Commands for Invariant Checking
In this section we list the new commands for checking invariants. Some of these commands can be applied only to
finite-state models (e.g. “check invar guided”), some others can be applied both to finite and infinite-state models
(e.g. “check invar ic3”).

check invar guided - Guided reachability invariant checking Command [F]

check invar guided [-n <index> | -p <prop> | -P <name>] [-s] [-S] [-R]
[-d] [-a] [-u] [-f] (-h | -e "sere expr" | -i sere file)

Performs invariant checking on the given model using Guided Reachability algorithm over the given strategy.
Checking the invariant is the process of determining that all states reachable from the initial states of the
model lie in the invariant. For each falsified property, a counterexample is built and stored in the TraceMgr
according to the global option about counterexample generation.

By default in GR the computation of reachable states is done in two steps. At first, states satisfying the
strategy are computed until fixpoint is reached. Then, starting from the previous fixpoint states, the image
computation is applied regardless of the strategy until the global fixpoint, i.e. until all the reachable states
are detected.

Invariants to be verified have to be provided as simple formulas (the only temporal operator allowed is “next”)
in the input model file via the INVARSPEC keyword or directly at command line, using the option -p.

Option -n and -P can be used for checking a particular invariant of the model. If neither -n nor -p nor -P
are used, all the invariants are checked.

If option -d is used, it is not possible to mark as verified the properties not falsified during the strategy
application because the set of reached states might be not complete.

If generalized invariant (invariant containing IVAR and NEXT variables) are checked, the BDD version of
the input model is needed to perform property rewriting. Using the option -d, the command avoid to build
it, so we need to force the construction using the option -f.

When option -a is used, the verification process (and the underlying reachability analysis) stops as soon as
the first checked property is found false. Since the exploration resuming is not allowed, any successive call
to the command will start the reachability analysis from scratch.

The strategy must be a valid PSL formula. Allowed PSL operators are: “; [∗] [∗N](withN > 0) |”

Copyright ©2019 by FBK. 118

nuXmv 2.0.0 User Manual

Command Options:

-h Prints the command usage.
-s Uses model simplification over the given model
-S Enables the use of a further simplified FSM for each atomic part of the given

SERE
-R Enables the use of Implicit Frame Condition for each atomic part of the given

SERE
-p <invar-expr

[IN context]>
The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in. The property is added to the Property Database.

-n <index> Verifies the invariant with index “index” within the Property Database
-P <name> Verifies the invariant named “name” within the Property Database
-d Disables the reachability analysis completion. This means that only the strat-

egy provided with the command is executed. The resulting set of reachable
states is not guaranteed to be complete. This option makes invariant check-
ing algorithm incomplete, therefore no “invariant is true” response can be
given

-f Forces the building of the BDD FSM. Use this option if using option -d and
verifying generalized invariants

-a Stop verification at the first property found false.
-u Change the semantics of the ”;” operator from SEQUENCE to UNION.
-e "sere expr" Provide the strategy from command line. This is an alternative to provide

the strategy with an external file. In this case, the SERE formula must not
begin with keyword ’grsequence’

-i sere file Provide the strategy from file. This is an alternative to provide the strategy
with the -e option. The SERE expression must start with the ’grsequence’
keyword and must end with a ”;”

msat check invar bmc - Invariant property check with BMC Command [I]

msat check invar bmc [-h | -n idx | -p "formula" | -P "name"] [-d
"mathsat" | "smtlib"] [-o filename] [-a alg] [-i] [-k max len] [-K
step size] [-e]

Performs invariant checking with BMC.

Copyright ©2019 by FBK. 119

nuXmv 2.0.0 User Manual

Command Options:

-h Shows a brief description of the available options
-u Disables SMT solver invocation
-n idx Checks the invariant (INVARSPEC) property specified with idx
-p "formula" Checks the specified invariant property
-P name Checks the invariant property with given name
-a alg Uses the specified algorithm. Valid values are:

• classic (it is k-induction with k=1)

• een-sorensson

• falsification

• dual

• zigzag

• interp seq

• interpolants

Default value is taken from variable bmc invar alg
-k max len Maximum bound for BMC instead of using the variable bmc length

value. Use only when een-sorensson, falsification, dual or zigzag algorithm
is selected

-K step size Only for falsification: increment the search of step size at a time. Must
be greater than zero (1 by default).

-i Use incremental version of falsification algorithm. Requires -a falsification
-e Performs an extra step for finding a proof. Can be used only with the een-

sorensson algorithm
-o filename Instead of checking the property the SMT problems are dumped into file

filename with an additional suffix. For example:

’ bmc classic’ for classic algorithm,

’ bmc base n’ for een-sorensson base problem

’ bmc step n’ for een-sorensson step problem where ’n’ is the length of
a path taken into account

-d Enables dump of the problems on the selected format.
-f format Selects the dumping format. Valid values are: “smtlib1” and “smtlib2”

Notice that if no property is specified, checks all LTL properties.

check invar bmc itp - Interpolation based invariant verification algorithms Command [F]

check invar bmc itp [-h] | [-n idx | -p ‘‘expr’’ | -P ‘‘name’’] [-k
‘‘bound’’] [-a ‘‘alg’’]

Performs invariant checking using interpolants based BMC algorithms. If no property is specified, checks
all INVAR properties.

IMPORTANT: This command does not accept mixed integer and real types in the model’s FSM
constraints.

Command Options:

Copyright ©2019 by FBK. 120

nuXmv 2.0.0 User Manual

-h Shows a brief description of the available options.
-n number Checks the property stored at the given index
-P name Checks the property named name in the property database.
-p "formula [IN context]"Checks the formula specified on the command-line. context is the module

instance name which the variables in formula must be evaluated in.
-k idx Sets the BMC bound limit to be used.
-a alg Use the given algorithm for verification. Possible values are “mcmil-

lan”. “itp seq”, “mcmillan2”, “itp seq2”, “avy”, “falsification” (Default) and
“itp seq”

check invar ic3 - Verifies invariant properties using IC3 engines Command [F,I]

check invar ic3 [-h] [-d] [-i] [-O 0|1|2] [-a 0|1] [-u num] [-g] [-Y]
[-m num] [-v num] [-n number | -p "invar-expr" | -P "name"] [-k number]

Checks invariant properties using the ic3 engines (simplic3 or smt)

When the domain is infinite (or when forced explicitly with option -i), msatic3 library is used to check the
property.

IMPORTANT: When the domain is infinite, the verification problem is in general undecidable and
this command may fail in proving the property. In particular, it may not terminate or it
may terminate with an unknown result when it cannot refine the abstraction (this may
be due to the presence of mixed integer/real predicates).

Command Options:

-h Shows a brief description of the available options.
-d Disables the counterexample construction when proving false a property.
-i Forces the use of the engine for infinite domains (msatic3)
-O 0|1|2 Only for finite: sets the preprocessing level (default: 2)

0 : No preprocessing.

1 : Enables sequencial preprocessing which searches equivalent latches and
or constants

2 : Adds 2-step temporal decomposition to the preprocessor (default).

-a 0|1 If true, enable abstraction/refinement
-u num Only for finite: perform property unrolling (i.e. target enlargement) for the

given number of steps. Default 4.
-g Only for finite: enables clause generalization, according to Zyad Has-

san, Aaron R. Bradley, Fabio Somenzi, ”Better Generalization in IC3”,
FMCAD’13

-Y Invokes a portfolio of different algorithms in parallel. Takes precedence over
all the other options. The variable ic3.portfolio exe must be set to the
name of the executable implementing the portfolio.

Copyright ©2019 by FBK. 121

nuXmv 2.0.0 User Manual

-v num Enables verbosity. Default 0. Must be greater or equal to 0.
-m num Only for finite: Max number of solvers to use for frames in IC3. Default 1.

Must be greater or equal to 1.
-n number Checks the INVAR property with index number in the property database.
-p "invar-expr

[IN context]"
The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in.

-P name Checks the INVAR property named name in the property database.
-k number Sets the bound of IC3 to the given number.

check invar local - Localized invariant checking Command [F]

check invar local [-h] [-k] [-n idx | -p "expr" | -P "name"]

Performs invariant checking on the localized model. Model localization is performed before starting the
checking process. This can greatly help in reducing resources (and time) required to check the property.
Localization takes place using the property context as the input variable set.

Command Options:

-h Shows a brief description of the available options.
-n idx Checks the property stored at the given index
-P ‘‘name’’ Checks the property named name in the property database.
-p ‘‘expr’’ Checks the formula specified on the command-line.
-k This flag enables recursive dependencies resolving when performing simpli-

fication, thus resulting in a stricter, behavior-preserving, approximation.

5.3.1 Incremental Cone Of Influence for Invariant Checking
In this section we list the commands for checking invariant properties that exploits abstraction based on incre-
mental cone of influence reduction. The analysis starts considering the finite state transition corresponding to
the cone of the property at distance 0. If it succeeds in proving the property holds, it terminates. Otherwise, the
counter-example is analyzed to see if it corresponds to a concrete counter-example. If the counter-example can be
concretized, then we are done: the property is violated. Otherwise, the cone is refined adding new variables until
either the property has been proved or disproved.

check invar inc coi bdd - BDD-based Incremental COI invariant checking Command [F]

check invar inc coi bdd [-h] | [-n number | -p "invar-expr [IN context]"
| -P "name"] [-I]

Performs invariant checking using the BDD-based Incremental COI algorithm. Invariants to be verified
can be provided as simple formulas (Only temporal operator allowed is “next”) in the input file via the
INVARSPEC keyword or directly at command line, using the option -p.

Option -n or -P can be used for checking a particular invariant of the model. If neither -n nor -p nor -P
are used, all the invariants are checked.

Copyright ©2019 by FBK. 122

nuXmv 2.0.0 User Manual

Command Options:

-p "invar-expr
[IN context]"

The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in.

-n "idx" Verifies the invariant with index “idx” within the Property Database
-P "name" Verifies the invariant named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI

check invar inc coi bmc - SAT-based Incremental COI invariant checking Command [F]

check invar inc coi bmc [-h] | [-n number | -p "invar-expr [IN context]"
| -P "name"] [-I] [-k bound]

Performs invariant checking using the SAT-based Incremental COI algorithm. Invariants to be verified can be
provided as simple formulas (Only temporal operator allowed is “next”) in the input file via the INVARSPEC
keyword or directly at command line, using the option -p.

Option -n or -P can be used for checking a particular invariant of the model. If neither -n nor -p nor -P
are used, all the invariants are checked.

Command Options:

-p "invar-expr
[IN context]"

The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in.

-n "idx" Verifies the invariant with index “idx” within the Property Database
-P "name" Verifies the invariant named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI
-k ‘‘bound’’ The bound to be used for SAT algorithms

msat check invar inc coi - SMT-based Incremental COI invariant checking Command [I]

msat check invar inc coi [-h] | [-n number | -p "invar-expr [IN
context]" | -P "name"] [-I] [-u] [-i] [-k bound]

Performs invariant checking using the SMT-based Incremental COI algorithm. Invariants to be verified
can be provided as simple formulas (Only temporal operator allowed is “next”) in the input file via the
INVARSPEC keyword or directly at command line, using the option -p.

Option -n or -P can be used for checking a particular invariant of the model. If neither -n nor -p nor -P
are used, all the invariants are checked.

IMPORTANT: In current implementation options -i and -u are disabled, and an error is reported to
the user when used.

IMPORTANT: When using interpolation (option -i), integer and real types in the model’s FSM
constraints cannot be mixed.

Command Options:

-p "invar-expr
[IN context]"

The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in.

Copyright ©2019 by FBK. 123

nuXmv 2.0.0 User Manual

-n idx Verifies the invariant with index “idx” within the Property Database
-P "name" Verifies the invariant named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI
-u Use unsat-cores variables for refinement (unsupported yet)
-i Use interpolants variables for refinement (unsupported yet)
-k bound The bound to be used for SMT algorithms

check invar inc coi - Incremental COI invariant checking Command [F,I]

check invar inc coi [-h] | -v eng -e eng [-n number | -p "invar-expr [IN
context]" | -P "name"] [-I] [-u] [-i] [-k bound]

Performs invariant checking using the Incremental COI algorithm. Invariants to be verified can be provided
as simple formulas (Only temporal operator allowed is “next”) in the input file via the INVARSPEC keyword
or directly at command line, using the option -p.

Option -n or -P can be used for checking a particular invariant of the model. If neither -n nor -p nor -P
are used, all the invariants are checked.

IMPORTANT: In current implementation options -i and -u are disabled, and an error is reported to
the user when used.

IMPORTANT: For SMT, when using interpolation (option -i), integer and real types in the model’s
FSM constraints cannot be mixed.

Command Options:

-p "invar-expr
[IN context]"

The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in.

-n "idx" Verifies the invariant with index “idx” within the Property Database
-P "name" Verifies the invariant named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI
-u Available only with SMT: Use unsat-cores variables for refinement
-i Available only with SMT: Use interpolants variables for refinement
-k bound The bound to be used for SAT / SMT algorithms
-v "eng" Specifies the engine to be used for verification. Can be ”bdd”, ”sat” or ”smt”
-e "eng" Specifies the engine to be used for traces execution. Can be ”bdd”, ”sat” or

”smt”

5.4 Commands for LTL Model Checking
In this section we list the new commands for checking LTL properties. All these commands can be applied both
to finite and infinite-state models (e.g. “ic3 check ltlspec”).

msat check ltlspec bmc - LTL property check with BMC Command [I]

msat check ltlspec bmc [-h | -n idx | -p "formula" | -P "name"] [-k
max length] [-l loopback] [-d mathsat|smtlib] [-o filename]

Performs LTL checking with BMC. Currently, past operators and option bmc force pltl tableau are not sup-
ported.

Copyright ©2019 by FBK. 124

nuXmv 2.0.0 User Manual

Command Options:

-h Shows a brief description of the available options
-u Disables SMT solver invocation
-t max timespan Shows theory lemmas up to max timespan
-n idx Checks the LTL property specified with idx
-p "formula" Checks the specified LTL property
-P name Checks the LTL property with given name
-k max length Maximum bound for BMC instead of using the variable bmc length value
-l loopback Checks the property using loopback value instead of using the variable

bmc loopback value

-o filename Uses filename as file to dump the generated problem. filename may
contain patterns

-d Enables dump of the problems on the selected format.
-f format Selects the dumping format. Valid values are: “smtlib1” and “smtlib2”

Notice that if no property is specified, checks all LTL properties.

msat check ltlspec sbmc inc - LTL property check with Incremental SBMC Command [I]

msat check ltlspec sbmc inc [-h | -n idx | -p "formula" | -P "name"] [-k
max length] [-N] [-c]

Performs LTL incremental checking with SBMC.

Currently, past operators and option bmc force pltl tableau are not supported.

Command Options:

-h Shows a brief description of the available options
-n idx Checks the LTL property specified with idx
-p "formula" Checks the specified LTL property
-P name Checks the LTL property with given name
-k max length Maximum bound for BMC instead of using the variable bmc length value
-N Does not perform virtual unrolling
-c Performs completeness check

Notice that if no property is specified, checks all LTL properties.

check ltlspec ic3 - Verifies LTL properties using ic3 engines, either with K-
Liveness or with (abstract) liveness-to-safety transformation

Command [F,I]

check ltlspec ic3 [-h] [-d] [-m num] [-i] [-Y] [-u num] [-g] [-O [0|1]]
[-e] [-E num] [-L] [-v num] [-a 0|1] [-n number | -p "ltl-expr" | -P
"name"] [-k number] [-l number] [-K 0|1]

Checks LTL properties using the ic3 engines (simplic3 or smt), either with the K-Liveness algorithm or with
(abstract) liveness-to-safety transformation.

When the domain is infinite (or when forced explicitly with option -i), msatic3 library is used to check the
property.

Copyright ©2019 by FBK. 125

nuXmv 2.0.0 User Manual

IMPORTANT: When the domain is infinite, the verification problem is in general undecidable and
this command may fail in proving the property. In particular, it may not terminate or it
may terminate with an unknown result when it cannot refine the abstraction (this may
be due to the presence of mixed integer/real predicates).

Command Options:

-h Shows a brief description of the available options.
-d Disables the counterexample construction when proving false a property.
-i Forces the use of the engine for infinite domains (msatic3)
-O 0|1 Only for finite: sets the preprocessing level (default: 1)

0 : No preprocessing.

1 : Enables sequencial preprocessing which searches equivalent latches and
or constants (default).

-u num Only for finite: perform property unrolling (i.e. target enlargement) for the
given number of steps. Default 4.

-g Only for finite: enables clause generalization, according to Zyad Has-
san, Aaron R. Bradley, Fabio Somenzi, ”Better Generalization in IC3”,
FMCAD’13

-Y Invokes a portfolio of different algorithms in parallel. Takes precedence over
all the other options. The variable ic3.portfolio exe must be set to the
name of the executable implementing the portfolio.

-e Only for finite: enables extraction additional liveness stabilizing constraints
in preprocessing generalization.

-E num Only for finite: number of candidates to consider for liveness constraint ex-
traction.(0: disabled, 3000 default).

-L Disables complementation of k-liveness with BMC (if disabled no coun-
terexample can be computed).

-m Only for finite: max number of solvers to use for frames in IC3. Default 1.
Must be greater or equal to 1.

-a 0|1 If true, enable abstraction/refinement (only for infinite-state models).
-v <num> Enables verbosity. Default 0. Must be greater or equal to 0.
-n number Checks the LTL property with index number in the property database.
-p "invar-expr

[IN context]"
The command line specified LTL formula to be verified. context is the
module instance name which the variables in invar-expr must be eval-
uated in.

-P name Checks the LTL property named name in the property database.
-k number Sets the bound of IC3 to the given number.
-l number Sets the bound of K-Liveness to the given number.
-K 0|1 Select between K-Liveness (-K 1, default) or liveness-to-safety (-K 0).

check ltlspec simplify - LTL model checking using simplifications Command [F]

check ltlspec simplify [-h] [-n index | -p ‘‘prop’’ | -P ‘‘name’’] [-s]*
[-r]*

Performs model checking of LTL formulas. LTL model checking is reduced to CTL model checking as
described in the paper by [CGH97a].

Copyright ©2019 by FBK. 126

nuXmv 2.0.0 User Manual

The model on which the model checking is performed is simplified using the Model Simplifier and the Range
Reduction systems.

By default, Model Simplification and Range Reduction are used, but a chain of simplifications to be per-
formed over the model can be specified using the -s and the -r command options.

A ltl-expr to be checked can be specified at command line using option -p. Alternatively, options -n
and -P can be used for checking a particular formula in the property database. If neither -n nor -p nor -P
are used, all the LTLSPEC formulas in the database are checked.

Command Options:

-p ‘‘prop’’ An LTL formula to be checked.
-P "name" Checks the LTL property named “name”
-n index Checks the LTL property with index index in the property database.
-s Adds Model Simplification to the chain of simplifications. This option can

be used multiple times
-r Adds Range Reduction to the chain of simplifications. This option can be

used multiple times

5.4.1 Incremental Cone Of Influence for LTL Model Checking
In this section we list the commands for checking LTL properties that exploits abstraction based on incremental
cone of influence reduction. Similarly to the case of verification of invariants, the analysis starts considering the
finite state transition corresponding to the cone of the property at distance 0. If it succeeds in proving the property
holds, it terminates. Otherwise, the counter-example is analyzed to see if it corresponds to a concrete counter-
example. If the counter-example can be concretized, then we are done: the property is violated. Otherwise, the
cone is refined adding new variables until either the property has been proved or disproved.

check ltlspec inc coi bdd - BDD-based Incremental COI LTL properties
checking

Command [F]

check ltlspec inc coi bdd [-h] | [-n number | -p "ltl-expr [IN context]"
| -P "name"] [-I]

Performs LTL checking using the BDD-based Incremental COI algorithm. LTL properties to be verified can
be provided as LTL formulas in the input file via the LTLSPEC keyword or directly at command line, using
the option -p.

Option -n or -P can be used for checking a particular LTL property of the model. If neither -n nor -p nor
-P are used, all the LTL properties are checked.

Command Options:

-p "ltl-expr
[IN context]"

The command line specified LTL formula to be verified. context is the
module instance name which the variables in ltl-expr must be evaluated
in.

-n number Verifies the LTL property with index number within the Property Database
-P "name" Verifies the LTL property named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI

check ltlspec inc coi bmc - SAT-based Incremental COI LTL properties check-
ing

Command [F]

Copyright ©2019 by FBK. 127

nuXmv 2.0.0 User Manual

check ltlspec inc coi bmc [-h] | [-n number | -p "ltl-expr [IN context]"
| -P "name"] [-I] [-k bound]

Performs LTL checking using the SAT-based Incremental COI algorithm. LTL properties to be verified can
be provided as LTL formulas in the input file via the LTLSPEC keyword or directly at command line, using
the option -p.

Option -n or -P can be used for checking a particular LTL property of the model. If neither -n nor -p nor
-P are used, all the LTL properties are checked.

Command Options:

-p "ltl-expr
[IN context]"

The command line specified LTL formula to be verified. context is the
module instance name which the variables in ltl-expr must be evaluated
in.

-n number Verifies the LTL property with index number within the Property Database
-P "name" Verifies the LTL property named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI
-k bound The bound to be used for SAT algorithms

msat check ltlspec inc coi - SMT-based Incremental COI LTL properties
checking

Command [I]

msat check ltlspec inc coi [-h] | [-n number | -p "ltl-expr [IN
context]" | -P "name"] [-I] [-u] [-i] [-k bound]

Performs LTL checking using the SMT-based Incremental COI algorithm. LTL properties to be verified can
be provided as LTL formulas in the input file via the LTLSPEC keyword or directly at command line, using
the option -p.

Option -n or -P can be used for checking a particular LTL property of the model. If neither -n nor -p nor
-P are used, all the LTL properties are checked.

IMPORTANT: In current implementation options -i and -u are disabled, and an error is reported to
the user when used.

IMPORTANT: When using interpolation (option -i), integer and real types in the model’s FSM
constraints cannot be mixed.

Command Options:

-p "ltl-expr
[IN context]"

The command line specified LTL formula to be verified. context is the
module instance name which the variables in ltl-expr must be evaluated
in.

-n idx Verifies the LTL property with index “idx” within the Property Database
-P "name" Verifies the LTL property named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI
-u Use unsat-cores variables for refinement
-i Use interpolants variables for refinement
-k bound The bound to be used for SMT algorithms

check ltlspec inc coi - Incremental COI LTL properties checking Command [F,I]

check ltlspec inc coi [-h] | -v eng -e eng [-n number | -p "ltl-expr [IN
context]" | -P "name"] [-I] [-u] [-i] [-k bound]

Copyright ©2019 by FBK. 128

nuXmv 2.0.0 User Manual

Performs LTL checking using the Incremental COI algorithm. LTL properties to be verified can be provided
as LTL formulas in the input file via the LTLSPEC keyword or directly at command line, using the option -p.

Option -n or -P can be used for checking a particular LTL property of the model. If neither -n nor -p nor
-P are used, all the LTL properties are checked.

IMPORTANT: In current implementation options -i and -u are disabled, and an error is reported to
the user when used.

IMPORTANT: For SMT, when using interpolation (option -i), integer and real types in the model’s
FSM constraints cannot be mixed.

Command Options:

-p "ltl-expr
[IN context]"

The command line specified LTL formula to be verified. context is the
module instance name which the variables in ltl-expr must be evaluated
in.

-n number Verifies the LTL property with index number within the Property Database
-P "name" Verifies the LTL property named “name” within the Property Database
-I Execute traces over increasing size FSMs, based on Incremental COI
-u Available only with SMT: Use unsat-cores variables for refinement
-i Available only with SMT: Use interpolants variables for refinement
-k bound The bound to be used for SAT / SMT algorithms
-v "eng" Specifies the engine to be used for verification. Can be ”bdd”, ”sat” or ”smt”
-e "eng" Specifies the engine to be used for traces execution. Can be ”bdd”, ”sat” or

”smt”

5.4.2 Compositional Reasoning for LTL Model Checking
Compositional model checking is a verification method that aims at reducing the verification problem of large
systems to smaller, possibly localized verification problems. This is done in order to try to avoid the “state
explosion problem”. When reasoning compositionally about two systemsA andB, it is often necessary to assume
the correctness of A to verify B, and vice-versa. In the literature this “apparent” circularity has been resolved by
induction over time. The induction over time is made explicit by assuming that a property P only up to time t− 1
when proving Q at time t, and vice-versa. The proof obligations incurred using this method can be discharge with
model checking. This approach has been described in [McM99]. In this section we describe the commands for
performing the above outlined compositional reasoning.

check ltlspec compositional - Circular compositional reasoning model check-
ing

Command [F,I]

check ltlspec compositional [-h] | -f ‘‘proof-file’’ [-n ‘‘node’’] [-t
‘‘check-technique’’]

Performs circular compositional reasoning model checking as described in [McM99] and [PK99].

An assertion is a condition that must hold true in every possible execution of the program. Assertions refer
to properties in LTL.

In order to apply the circular compositional rule, one has to supply the set of assertions to be proved and the
proof graph. From these, a sufficient set of proof obligations on the form of LTL formulas are built.

A property is specified using the following syntax:

name : assert〈formula〉;
When specifying the proof graph, properties are refererred to by their names. An arc (p1, p2) in the proof
graph is specified as follows:

Copyright ©2019 by FBK. 129

nuXmv 2.0.0 User Manual

using n1 prove n2;

where n1 and n2 are the respective names of properties p1 and p2. A list of assumption can also be used
when verifying a property, specifying a comma-separated list of assumptions.

using n1, n2, n3 prove n4;

Such a “proof” may not contain circular chains of reasoning. The system verifies that every cycle in the
proof graph is cut by a unit delay arc. A unit delay arc is specified by putting the assumption in parentheses,
as follows:

using (n1) prove n2;

Command Options:

-t technique Use the specified technique to perform model checking. Valid techniques
are {bdd, bmc, smt}

-n node Perform the check only for the specified node instead of checking all the
nodes

-f proof-file Reads the proof graph from the specified file

5.5 Commands for Requirements Analysis
NUXMV provides commands for supportin requirements analysis. In particular, it provides commands for check-
ing the consistency of a set of requirements, checking whether a set of requirements is consistent with another
requirement, and finally to check whether a set of requirement entails another requirement.

reqan check consistency - Checks consistency of a set of requirements. Command [F,I]

reqan check consistency[-h] [-i] [-e bdd|sat|msat|ic3] [-t id] -r
"props"

Checks the consistency of the provided set of requirements specified by their property index.

Command Options:

-h Shows a brief description of the available options.
-i Ignores the user’s FSM (takes only the language).
-e engine Uses the given engine, i.e. bdd sat, msat, ic3 (default: sat).
-t id Specify the time port for kzeno algorithm (default=none).
-r "props" A subset of properties given as indices. Indices are separated by comma ’,’

or colon ’:’. Ranges are allowed where lower and upper bounds are separated
by dash ’-’. For example ”1:3-6:8” for indices 1,3,4,5,6,8.

reqan check possibility - Checks consistency of a possibility with a set of re-
quirements.

Command [F,I]

reqan check possibility[-h] [-i] [-e bdd|sat|msat|ic3] [-t id] [-r
"props"] -p idx

Checks the consistency of the provided set of requirements specified by their property index and a given
possibility (also specified with an index).

Copyright ©2019 by FBK. 130

nuXmv 2.0.0 User Manual

Command Options:

-h Shows a brief description of the available options.
-i Ignores the user’s FSM (takes only the language).
-e engine Uses the given engine, i.e. bdd sat, msat, ic3 (default: sat).
-t id Specify the time port for kzeno algorithm (default=none).
-r "props" A subset of properties given as indices. Indices are separated by comma ’,’

or colon ’:’. Ranges are allowed where lower and upper bounds are separated
by dash ’-’. For example ”1:3-6:8” for indices 1,3,4,5,6,8.

-p idx Index of a possibility.

reqan check assertion - Checks the assertion w.r.t. of a set of requirements. Command [F,I]

reqan check assertion[-h] [-i] [-e bdd|sat|msat|ic3] [-t id] [-r
"props"] -p idx

Checks whether the set of requirements entails the assertion.

Command Options:

-h Shows a brief description of the available options.
-i Ignores the user’s FSM (takes only the language).
-e engine Uses the given engine, i.e. bdd sat, msat, ic3 (default: sat).
-t id Specify the time port for kzeno algorithm (default=none).
-r "props" A subset of properties given as indices. Indices are separated by comma ’,’

or colon ’:’. Ranges are allowed where lower and upper bounds are separated
by dash ’-’. For example ”1:3-6:8” for indices 1,3,4,5,6,8.

-p idx Index of an assertion.

5.6 Commands for Computing Reachable States

compute reachable guided - Guided reachability set of reachable states Command [F]

compute reachable guided [-s] [-S] [-R] [-P] [-d] [-u] (-h | -e
"sere expr" | -i sere file)

Computes the set of reachable states of the given model using Guided Reachability algorithm over the given
strategy.

If the set of reachable states has already been computed, the command returns immediately since there is
nothing more to compute.

The resulting reachable states are globally stored and used to simplify the execution of model checking
commands (e.g. check invar). This can result in improved performance on models with sparse state spaces.
The exploration DAG is not stored, so exploration resuming is not allowed.

By default GR performs the computation of reachable states in two steps. At first, states satisfying the
strategy are computed until fixpoint is reached. Then, starting from the previous fixpoint states, the image
computation is applied regardless of the strategy until the global fixpoint, i.e. until all the reachable states
are detected.

If option -d is used, it is not possible to mark the reached states as complete and to store them globally, since
it is not implemented any completeness checking on them.

The strategy must be a valid PSL formula. Allowed PSL operators are: “; [∗] [∗N](withN > 0) |”

Copyright ©2019 by FBK. 131

nuXmv 2.0.0 User Manual

Command Options:

-h Prints the command usage.
-s Performs syntactic simplification on the given model.
-S Performs syntactic simplification on the FMSs related to each disjunct spec-

ified in the given SERE.
-R Enables the use of Implicit Frame Conditions during the reachability

analysis.
-d Disables the reachability analysis completion. This means that only the strat-

egy provided with the command is executed and the original FSM is not used
to discover the possible unreached states. The resulting set of reachable
states is not guaranteed to be complete.

-u Changes the semantics of the ”;” operator from SEQUENCE to UNION.
-P Enables command profiling. The resulting time values are valid only if a

verbose level lower or equal than 2 is specified.
-e "sere expr" Provides the strategy from command line. In this case, the SERE formula

must not begin with keyword ’grsequence’. This is an alternative to provide
the strategy with an external file (-i option).

-i sere file Provides the strategy from file. The SERE expression must start with the
’grsequence’ keyword and must end with a ”;”. This is an alternative to
provide the strategy from command line (-e option).

5.7 Commands for Reasoning via Abstraction
Predicate abstraction is a technique that is used to prove properties of finite- and infinite-state systems. It is a
combination of theorem proving and model checking techniques. Given a concrete finite- or infinite-state system
and a set of predicates, a conservative finite state abstraction is generated. (For every execution in the concrete
system there is a corresponding execution in the abstract system.) The abstract version of the verification condition
is model checked in this abstract system. If the property is verified then it holds in the concrete system. Otherwise
an abstract counter-example trace is generated. There could be a concrete counter-example corresponding to
it, in which case there is a bug in the design, or the abstract counter-example is an artifact of the abstraction.
The counter-example can be analyzed to find a real bug or to suggest extra predicates to refine the abstraction
thereby avoiding that particular spurious trace. Then the process starts anew. The abstraction refinement process
is guaranteed to terminate for finite-state systems (if resources permits). However, the process is not guaranteed to
terminate for infinite-state systems: proving arbitrary (safety) properties of an infinite state system is not decidable,
but for a large number of problems this method can successfully prove properties.

In NUXMV we provide two complementary approaches, both based on predicate abstraction. The first relies
on the explicit computation of the abstract transition system. The second, uses an implicit abstraction to avoid the
expensive computation of the abstract transition system.

5.7.1 Explicit Predicate Abstraction
These commands implements the functionalities for performed Counterexample Guided predicate Abstraction
Refinement (CEGAR) [CGJ+03]. The CEGAR approach requires the computation of a quantifier-free formula
that is equivalent to the abstract transition relation w.r.t. a given set of predicates. This, in turn, requires the solving
of an ALLSAT problem [LNO06]. For this step, NUXMV implements different techniques: the combination of
BDD and SMT [CCF+07, CFG+10], where BDDs are used as compact Boolean model enumerator within an
ALLSMT approach; the technique that exploits the structure of the system under verification, to partition the
abstraction problem into the combination of several smaller abstraction problems [CDJR09]. For the refinement
step to discard the spurious counterexample, NUXMV implements three approaches based on the analysis of the
unsatisfiable core, on the analysis of the interpolants, and on the weakest preconditions..

Copyright ©2019 by FBK. 132

nuXmv 2.0.0 User Manual

The command “config abstraction” sets the options that control how the abstraction is performed. The
command “add abstraction preds” allows to specify the predicates to be used for CEGAR. The com-
mand “build abstract model” computes the abstract transition system w.r.t. the specified set of predicates.
Then, the model can be dumped into a file with the command “write abstract model”. The command
“check invar cegar predabs” performs the CEGAR loop checking the given property.

config abstraction - Configures the options for abstraction computation Command

config abstraction [-h] [-e <output>] [-d <output>] [-a <engine>] [-c
(0|1)] [-t (0|<number>)] [-b (0|1)] [-s]

This command sets the options for abstraction computation using the build abstract model com-
mand.

Command Options:

-h Shows the online help message.
-a engine The abstraction engine to be used. The parameter engine can be

msat (ALLSMT) or bdd [CFG+10] or bddarray [CFG+10] or bool or
structural [CDJR09].

-e output Enable the given output. The output can be either bdd or sexp or boolsexp.
-d output Disable the given output. The output can be either bdd or sexp or

boolsexp.
-c 0 | 1 Disable/Enable D’Agostino optimization (bddarray only).
-t 0 | <number> Disable/Set the threshold limit (bddarray only).
-b 0 | 1 Disable/Enable backjumping (bddarray only).
-s Shows the updated configuration.

add abstraction preds - Extracts the abstraction precision from a model or
from an external file

Command [I]

add abstraction preds [-h] [-a | -p number | -m number | -i file] [-o
file] [-s]

Extracts and/or shows the abstraction precision. The precision is the set of mirror variables and predicates
to be used in the abstraction. The precision can be specified in two ways. First, mirrors and predicates can
be declared in the model using the MIRROR and PRED keywords. A second possibility is to specify the list
of predicates and mirrors in a separate file and use the -i option. The file format is the following. The file
starts with the string PREDICATES followed by an arbitrary list of either PRED [predicate] or MIRROR
[mirror variable]. The extracted precision is then used in the commands build abstract model
and check invar cegar predabs.

Command Options:

-h Shows the online help message.
-a Adds all predicates and mirrors from model.
-p number Adds the predicate with the specified number from model.
-m number Adds the mirror with the specified number from model.
-i file Reads the precision specified in the given file.
-o file Writes the precision extracted so far in the specified file.

Copyright ©2019 by FBK. 133

nuXmv 2.0.0 User Manual

-s Shows the precision extracted so far.

abstraction use expression as predicate name Environment Variable

If set to true generates a name for “unamed predicates” that corresponds to the string of the predicate. For
instance for PRED x = y + 1 it will be internally generated a p 1 if this variable is 0, otherwise if the
value is 1, it will be generated the name "x = y + 1". Default value is 0.

build abstract model - Computes the abstraction Command [I]

build abstract model [-h]

This command computes and internally stores the abstraction of the model given the precision extracted
using add abstraction preds with the options set by config abstraction. The generated FSM
can be dumped using write abstract model and disposed using quit abstraction.

Command Options:

-h Shows the online help message.

quit abstraction - Computes the abstraction Command [I]

quit abstraction [-h]

This command disposes the FSM computed by build abstract model in order to allow for another
one to be generated (with different options or with a different precision).

Command Options:

-h Shows the online help message.

write abstract model - Dumps the abstracted FSM to a file Command [I]

write abstract model [-h] <filename>

This command dumps the FSM computed by build abstract model to the given filename.

Command Options:

-h Shows the online help message.

check invar cegar predabs - Checks a property using CEGAR Command [I]

check invar cegar predabs [-h] [-n <num> | -P <name> | -p <formula>] [-l
<num>]

This command sets performs the model checking of a property using the CEGAR loop. The options for
the abstraction phase can be set using config abstraction command. The property to be checked can
be specified by its number (-n parameter), by its name (-P parameter) or by entering an invariant formula
(-p option). The number of abstraction-refinement steps is bounded by the -l option and by default it is
unlimited It is possible to specify predicates and mirrors to be used in all the abstractions cycles by using the
add abstraction preds command.

Copyright ©2019 by FBK. 134

nuXmv 2.0.0 User Manual

Command Options:

-h Shows the online help message.
-n num The number of the property to be checked.
-P name The name of the property to be checked.
-p formula Adds an invariant property with the given formula and checks it.
-l num Bounds the number of cycles to num.

5.7.2 Implicit Predicate Abstraction
We also complement the CEGAR based predicate abstraction algorithms with new algorithms that combine ab-
straction with BMC and k-induction [Ton09]. The algorithms do not rely on quantifier elimination techniques to
compute the abstraction, but encode the model checking problem over the abstract state space into SMT problems.
The advantage, is that they avoid the possible bottleneck of abstraction computation.

msat check invar bmc implabs - Verifies invariant properties using BMC in
combination with Abstraction

Command [I]

msat check invar bmc implabs [-h] [-k bound] [-a] (-n prop index | -P
prop name | -p formula)

Checks invariant properties using bounded model checking with k-induction in combination with abstraction
w.r.t. a given set of predicates specified in the input file. The technique that combines abstraction and
k-induction has been described in [Ton09].

Command Options:

-h Shows a brief description of the available options.
-k bound Specifies the maximum bound for bounded model checking and k-induction.

Default value is the one specified by variable bmc length. If value 0
is used, the algorithms continues to increment k until either the property
has been proved, or a counterexample has been found, or the resources are
exhausted.

-n num Specifies the id of an invariant property. If the id does not corresponds to an
invariant property, then an error is issued.

-P prop name Specifies the name of an invariant property. If the name does not corresponds
to an invariant property, then an error is issued.

-p formula Specifies an invariant property. It will be added to the property database.
-a Disables the use of abstraction, and simply performs the verification using

the standard bounded model checking algorithms. The specification of one
invariant property is mandatory.

msat check invar bmc cegar implabs - Implicit abstract model checking Command [I]

msat check invar bmc cegar implabs [-h] | [-k bound] [-r meth] [-i meth]
[-s] [-m] [-d] [-c] [[-n prop] | [-p "invar"] | [-P name]]

Performs invariant checking with implicit abstract model checking as described in [Ton09]. This technique
does not compute the abstraction explicitly like it is the case in classical Counterexample Guided Abstraction
Refinement (CEGAR). This would save resources (memory and time) to check the property. If neither of -o,
-p, or -P is specified, the command tries to

Copyright ©2019 by FBK. 135

nuXmv 2.0.0 User Manual

Command Options:

-h Shows a brief description of the available options.
-k bound Specifies the maximum bound for bounded model checking and k-induction.

Default value is the one specified by variable bmc length. If value 0
is used, the algorithms continues to increment k until either the property
has been proved, or a counterexample has been found, or the resources are
exhausted.

-r meth Refinement method for generating new predicates.
(a:automatic (default), m:manual, h: hybrid).
automatic : Ignore predicates in smv file and generate new predicates
manual : Take predicates in smv file and do not generate any new predicates
hybrid : Take predicates in smv file and generate new predicates

-i meth K-induction method for termination condition.
(f:full(BW+FW) (default), b:backward only, n:none).
full : Check backward induction first and then forward induction;
backward : Only check backward condition;
none : None. This is fully Abstract BMC. Program will only terminate if it
reaches the bound k or find a bug.

-s Incrementally add simulation condition.
-m Tries to minimize the number of predicates added during the search.
-d Enables for the discovery of invariants during the search.
-c Enables for the fresh restart after each refinement step.
-n prop Checks the property stored at the given index, assuming it is an invariant. If

it is not an invariant, an error is issued.
-p ‘‘invar’’

[IN ‘‘context’’]
The command line specified invariant formula to be verified. context is
the module instance name which the variables in invar-expr must be
evaluated in.

-P ‘‘name’’ Checks the INVAR property named “name” in the property database.

5.8 Commands for Format Conversions
This subsection contains commands for converting the NUXMV format into other external formats.

5.8.1 Commands for aiger 1.9.4 format support
aiger 1.9.4 is a format, library and set of utilities for And-Inverter Graphs (AIGs) [BHW11]. The aiger 1.9.4
format has an ASCII and a binary version. As described in the documentation of aiger 1.9.4 [BHW11], the ASCII
version is the format of choice if an AIG is to be saved by an application which does not want to use the aiger
1.9.4 library. We refer the reader to the aiger 1.9.4 [BHW11] documentation for details about the format.

In this section we describe the commands for reading the aiger 1.9.4 format (both in the ASCII and in the
binary formats). Moreover, we also describe the command to dump a NUXMV model without Reals and Integers
into a set of aiger 1.9.4 files (one for each property).

read aiger model - Reads and loads an aiger model Command [F]

read aiger model [-h] | [-i filename] [-r] [-m]

The command imports a model in aiger 1.9.4 format into NUXMV. The loaded model can then be used as
any other input file in the extended language accepted by the tool.

Copyright ©2019 by FBK. 136

nuXmv 2.0.0 User Manual

If the aiger file is in the aiger 1.9.4 format with both bad, justice, and fairness, the the outputs (if any) are not
considered as properties. Each fairness conditions fi is transformed in FAIRNESS fi. Each bad conditions
bi is transformed in INVARSPEC !bi. Each justice constraint Ji = ji0, . . . , j

i
n is transformed in LTLSPEC

!
∧

jik∈Ji
GF i

k.

On the other hand, if the input file does not contain neither fairness, nor justice and nor bad, than if there
is a single output o0 it is interpreted as an INVARSPEC !o0. Otherwise, if more than one output is specified,
i.e. O = o0, . . . , on, each output oi is interpreted as a GFoi and the corresponding property is LTLSPEC
!
∧

oi∈O GFoi.

Command Options:

-h Shows a brief description of the available options.
-i filename Reads and loads the model from “input-file”.
-r Builds a relational hierarchy instead of building a functional one, i.e. uses

INIT / TRANS instead of ASSIGN
-m Uses monitor variables recognition, which tries to detect which variables

in the aiger model are monitor/support variables, and on success, slightly
reduces the number of variables and simplifies the Transition Relation. This
should work almost every time when loading ”write aiger model”-generated
files.

write aiger model - Dump of the current model in aiger format Command [F]

write aiger model [-h] | -p "prefix" | -f "output" [-i | -l] [-n index]
[-b] [-d path]

Dumps the currently loaded model in aiger format using the aiger 1.9.4 format. Input format before aiger
1.9.4 is only supported for reading (see read aiger model for details).

If -p ”prefix” is specified, a various number of aiger 1.9.4 files is generated, one for each property of kind
LTL or INVARSPEC in the property database. (Other types of properties are not supported.) Each file will
be named ”prefix proptype propidx.[aig|aag]”. Each generated file represents a model checking instance for
the corresponding property.

If option -f ”output” is specified instead, one file named ”output” will be generated, which represents the
Finite State Machine of the input model only without properties.

Command Options:

-h Shows a brief description of the available options.
-b Dumps the output files in binary format instead of ASCII format
-i Dumps models only for invariant properties
-l Dumps models only for LTL properties.
-n index Dumps models only for the property at index n.
-d path The directory where to save files. Default is “.”
-p prefix Dumps one model foreach property. Each generated file will be named “pre-

fix proptype propidx.[aig|aag]”

5.8.2 Commands for VMT format support
The VMT format is an extension of the SMT-LIBv2 [BST12] (SMT2 for short) format to represent symbolic
transition systems.

Copyright ©2019 by FBK. 137

nuXmv 2.0.0 User Manual

VMT exploits the capability offered by the SMT2 language of attaching annotations to terms and formulas
in order to specify the components of the transition system and the properties to verify. More specifically, the
following annotations are used:

:next name is used to represent state variables. For each variable x in the model, the VMT file contains a pair
of variables, xc and xn, representing respectively the current and next version of x. The two variables are
linked by annotating xc with the attribute :next xn. All the variables that are not in relation with another
by means of a :next attribute are considered inputs.

:init true is used to specify the formula for the initial states of the model. This formula should contain
neither next-state variables nor input variables. (The “dummy” value true in the annotation is needed
because the current SMT2 standard requires annotations to always have an associated value.)

:trans true is used to specify the formula for the transition relation.

:invar-property idx is used to specify invariant properties, i.e. formulas of the form Gp, where p is the
formula annotated with :invar-property. The non-negative integer idx is a unique identifier for the
property.

:live-property idx is used to specify an LTL property of the form FGp, where p is the formula annotated
with :live-property. The non-negative integer idx is a unique identifier for the property.

In a VMT file, only annotated terms and their sub-terms are meaningful. Any other term is ignored. Moreover,
only the following commands are allowed to occur in VMT files: set-logic, set-option, declare-sort,
define-sort, declare-fun, define-fun.(For convenience, an additional (assert true) command is al-
lowed to appear at the end of the file.)
The following example shows a simple NUXMV model (left) and its corresponding VMT translation (right).

NUXMV VMT

-- this is a comment
MODULE main
VAR x : integer;
INIT x = 1;
TRANS next(x) = x + 1;
INVARSPEC x > 0;

; this is a comment
(declare-fun x () Int)
(declare-fun xn () Int)
(define-fun .sv0 () Int (! x :next xn))
(define-fun .init () Bool (! (= x 1) :init true))
(define-fun .trans () Bool (! (= xn (+ x 1)) :trans true))
(define-fun .p0 () Bool (! (> x 0) :invar-property 0))

Since the SMT2 format (and thus also the VMT one that inherits from SMT2) does not allow to annnotate
the declaration of variables, it is a good practice to insert immediately after the declaration of the variables a set
of defines to specify the relations among variables. See for instance the define .sv0 in the example above that
introduces the relation between x and xn.
In the distribution of the NUXMV (within directory contrib), we also provide conversion scripts from other
formats (e.g. the from the BTOR language of Boolector [Boo] to the language of the NUXMV and vice-versa.

write vmt model - Dumps the model with a single property in VMT format Command [I]

write vmt model [-h] [-o filename]
[-n prop number | -i "invar expr" | -l "ltl expr"]

Dumps the model with the specified property in VMT format. VMT is an extension of the SMT-LIBv2 format
for specifying fair symbolic transition systems, and for specifying properties over the transition system.

Command Options:

-h Shows a brief description of the available options.
-o filename The filename where to dump the model and the possible LTL or invariant

property.

Copyright ©2019 by FBK. 138

nuXmv 2.0.0 User Manual

-n prop number Index in the property database of the property to dump. Only invariants and
LTL properties are supported.

-i "invar expr" An expression specifying the invariant property to dump. The property is
also added to the property database.

-l "ltl expr" An expression specifying the LTL property to dump. The property is also
added to the property database.

5.9 Commands for Model Transformation
In this section we report a set of commands that could be used to generate simplified models, and to explore the
model e.g. generating XMI format.

5.9.1 Commands for Model Simplification

write simplified model rel - Model simplification Command [I]

write simplified model rel [-h] [-o filename] [-e ‘‘expr’’]* [-l
‘‘prop’’]* [-i ‘‘prop’’]* [-c ‘‘prop’’]* [-I | -D] [-r]

Writes the currently loaded SMV model in the specified file, after having flattened and simplified it. INVARs
and ASSIGNs are taken as assumptions for simplification. Those expressions are processed in order to find
strong dependencies between variables, so that some of them can be simply removed, reducing the space
search. For example, having “INVAR a = b” means that all occurrences in the input model of one of the two
variables involved in the expression can be replaced with the other one. Also inlining is applied as much as
possible in order to reduce the expressions size.

During simplification, processes are eliminated and equivalent structures are set up.

If no file is specified, resulting simplified flat model is dumped to standard output.

Command Options:

-h Shows a brief description of the available options.
-o filename Attempts to write the simplified SMV model in filename
-e expr Adds the given assumption to the simplifier
-l prop Adds the given LTL property to the simplifier
-i prop Adds the given INVAR property to the simplifier
-c prop Adds the given CTL property to the simplifier
-D Does not add any define declaration to the output model
-I Disable defines and array defines inlining
-r Disable properties rewriting

write simplified model func - Model simplification Command [I]

write simplified model func [-h] | [-o filename] [-d] [-D]

Writes the currently loaded SMV model in the specified file, after having flattened and simplified it. As-
signments of the form A := B, in which A is a variable and B is a constant or a variable are transformed
into defines, thus reducing the state space of the model. Additionally, when 2 variables are assigned the
same expression then one of variables is converted to a define equal to the second variable. Assignments to
init, current and next variables are taken into account. Daggification can be used in order to share common
subformulas.

Copyright ©2019 by FBK. 139

nuXmv 2.0.0 User Manual

If no file is specified, resulting reduced simplified model is dumped to standard output.

Command Options:

-o filename Attempts to write the simplified SMV model in filename
-D Enables daggification and simplification of expressions to make the detection

of equivalent variables more effective
-d Disables optimization that creates one fresh variable to distinguish the first

state for assignments

write range reduced model - Writes a reduced flat model to a file Command [I]

write range reduced model [-h] | [-c] [-d] [-g] [-o file] [-f fixp]

Writes the currently loaded SMV model in the specified file, after having flattened it and reduced its variable
ranges. Processes are eliminated and a corresponding reduced model is printed out.

If no file is specified, resulting reduced flat model is dumped to standard output.

Command Options:

-h Shows a brief description of the available options.
-c Enables detection of counters from data clusters.
-d Disables normal range detection (counters still may be detected).
-g Adds invariant about guessed ranges to the property database.
-o file Attempts to write the flat SMV model in file
-f fixp Sets the fixpoint to be used for range extraction. Default is 20. Must be a

non-negative integer

build simplified property - Property simplification Command [I]

build simplified property [-h] | [-a] | [[-n <index>] | [-N <name>] [-c
<ctlspec>] | [-l <ltlspec>] | [-i <invarspec]]* [-e]

Performs property simplifications on a set of properties. INVARs and ASSIGN are taken as assumptions for
simplification, as done for command write simplified model rel. During simplification, processes
are eliminated and equivalent structures are set up. Each simplified property is associated to a simplified
model and registered in the property database, so that future calls to usual Model Checking commands (e.g.
check invar) will verify freshly created properties using the simplified model.

Using build simplified property with input model M and then performing model checkin, is
actually equivalent to reading model M , dumping the simplified version of M , M ′, using command
write simplified model rel, reading M ′ and finally perform model checking.

Command Options:

-h Shows a brief description of the available options.
-a Selects all registered properties for simplification.
-l prop Specifies a LTLSPEC property to simplify.
-i prop Specifies an INVARSPEC property to simplify.
-c prop Specifies a CTLSPEC property to simplify.

Copyright ©2019 by FBK. 140

nuXmv 2.0.0 User Manual

-e expr Assume given expression.
-n number Simplifies property with index number in the property database.
-N name Simplifies property with name name in the property database.

write hier coi model - Localize a model Command [I]

write hier coi model [-h] | -i iv-file [-k] [-o filename]

Given an input variables description file, this commands creates a localized version of the current model, that
is restricted to the parts of the model which depend on the variables given as input. The optional parameter
keep behavior forces adding the dependencies of the constraints in which a variable in input set occurs.

Command Options:

-h Shows a brief description of the available options.
-i iv file Reads the variable names from the specified “iv file” instead of searching

in the model matching the counter structure. Input file may contain variable
names and/or instances with the intended meaning to include all variables
within the instance

-k This flag enables recursive dependencies resolving when performing simpli-
fication, thus resulting in a stricter, behavior-preserving, approximation.

-o filename Writes the output generated by the command in to the file filename.

write countacc model - Create “accelerated” models. Command [I]

write countacc model [-h] | [-c] [-o filename] [-i iv file] [-l
list file] [-v] [-V] [-s] [-p]

This commands creates an ”accelerated” version of the current model changing the behavior of its counter
variables. A counter is a word variable that is initialized to 0, can be enabled by an arbitrary boolean
expression and that when enabled, increases by 1 at each step until a limit value is reached or the enabling
condition is false. When a counter reaches the limit or is disabled it is reset to 0. The accelerated model is
such that in a single step counters possibly increase their value by a number greater than 1.

Note that the accelerated model does not preserve all properties of the model except invariants.

Command Options:

-h Shows a brief description of the available options.
-c Disables the check on the constraints on counter variables.
-o filename Writes output to “filename” instead of stdout.
-i iv file Read the counter names from the specified “iv file” instead of searching in

the model matching the counter structure.
This option is incompatible with the option -l.

-l list file Read the counter names and limit values from the specified “list file” instead
of searching in the model matching the counter structure. The file must be
in the following format:
SIMPWFF

∧
c <= L

where c is the counter name and L is the limit value.
This option is incompatible with the option -l.

Copyright ©2019 by FBK. 141

nuXmv 2.0.0 User Manual

-v Removes the properties of the model and adds three properties for every
counter. These properties must hold for a valid counter.
This option is incompatible with option -V.

-V Adds an invariant property in the accelerated model to check whether the
counter acceleration is really useful or not. If the property does not hold, then
the counter acceleration may be useful, otherwise the counter acceleration is
totally useless.
This option is incompatible with option -v.

-s This option has to be used in conjunction with -i. If specified this option
enables the synthetization of limits for the counters specified in the “iv file”.

-p This option has to be used in conjunction with -s. If enabled, instead of
writing the accelerated model with the synthetized limits, outputs a list of
pairs (counter, limit) in the format of the “counter limit file”.

5.9.2 Commands for Model Exploration

write xmi model - Conversion of a symbolic FSM to an explicit FSM, and
printing to XMI format

Command [F,I]

write xmi model [-F method] [-o filename] [-a explist] [-f format]

Converts the symbolic FSM representing the model to an explicit finite state machine (EFSM). Then prints
it in XMI format to the file specified with the -o option.

If the option -a is not used, all finite variables of the model are taken into consideration.

Otherwise, the EFSM is abtstracted to the specified expressions: the states will be made of the specified
expressions only. The expressions can be boolean, or single variables with boolean, integer, enumeration or
word type. Expressions made by a single variable are expanded to all the valid assignments of the variable.
This behavior may be critical with words variables, that could easily have a wide range.

Command Options:

-h Shows a brief description of the available options.
-F method Allows the user to choose which engine to use for the computation. Valid

values are: bdd, sexp, sexp allsat, be.
-a expr list Abstract the EFSM to the specified expressions. Explist is “exp 1, ..., exp n”

where every exp i is a variable or a boolean expression.
-o file Redirects the output to the specified file; default: standard output.
-f format Format the XMI in a specific way. Currently, the only valid value is “ea”, for

making the xmi readable by Enterprise Architect.

5.10 Other Commands

check ltlspec on trace - Checks whether an LTL property is satisfied on a trace Command

check ltlspec on trace [-h] [-i] (-n number | -p "ltl expr" | -P "name")
[-l loopback] trace number

Checks whether an LTL property is satisfied on a given trace. The problem generated can be checked using
SAT/SMT backend.

Copyright ©2019 by FBK. 142

nuXmv 2.0.0 User Manual

Option -i forces the use of the engine for infinite domains. In case the user does not provide this option,
a SAT solver is called by default for checking the problem generated if only the formula and trace does
not contain infinite precision variables. Otherwise, a SMT solver will be called for solving the problem
generated.

We take into account that each NUXMV trace may correspond to an infinite number of traces due to the
possible presence of more than one loopbacks. So, it is not possible (or at least straightforward) to check all
of them. Therefore, we consider just one loopback and provide the user with the possibility to select it.

A ltl-expr to be checked can be specified at command line using option -p. Alternatively, options -n
and -P can be used for checking a particular formula in the property database. If neither -n nor -p nor -P
are used, then an error message is printed.

The loopback value can be specified at command line using option -l. This must a valid loopback value
on the given trace. If it is not valid, then an error message is printed and also the available loopbacks are
provided. In case that option -l is not used, then a warning is printed and the check is performed using the
first loopback found on the given trace.

Finally, the last argument of the command is the trace number which has to correspond to a trace stored in
the system memory. If the trace number is omitted, then an error message is printed. In case that the trace
has not loopbacks, then an error message is printed informing the user that the selected trace is finite and
cannot satisfy any LTL formula.

Command Options:

-h Shows a brief description of the available options.
-i Forces the use of the engine for infinite domains.
-n number Checks the LTL property with index number in the property database.
-p "ltl expr" An LTL formula to be checked.
-P "name" Checks the LTL property named “name”
-loopback Checks the property on the trace using loopback value. This must a valid

loopback value on the given trace.
trace number The (ordinal) identifier number of the trace to be used to check the property.

This must be the last argument of the command.

check traces properties - Checks the traces in the trace database against the
invar properties in the property database, if a trace falsifies a property

Command

check traces properties [-h] [-i] [-p] [-t] [-o <fname>]

Checks which traces in the trace database falsify invar properties in the property database. The problem
generated for checking a trace and a property can be solved using SAT or SMT solver.

Option -i forces the use of the an SMT backend solver. In case the user does not provide this option, a SAT
solver is called by default for checking the problem generated if only the formula and trace does not contain
infinite precision variables. Otherwise, a SMT solver will be called for solving the problem generated.

Option -p prints result on the terminal ordered by property number.

Option -t prints result on the terminal ordered by trace number.

Option -o <fname> writes result in the specified file, which is in XML format.

Command Options:

-h Shows a brief description of the available options.
-i Forces the use an SMT backend solver.

Copyright ©2019 by FBK. 143

nuXmv 2.0.0 User Manual

-p Prints the result ordered by property number.
-t Prints the result ordered by trace number.
-o <fname> Writes the result in the specified file, which is in XML format

5.11 NUXMV environment variables
In this section we describe all the environment variables that may affect the behavior of the new features of
NUXMV.

abstraction.engine Environment Variable

Specifies the engine to be used while computing the abstraction during the CEGAR loop. Possible values for
this variable are:

• msat: (default) This approach uses ALLSMT [LNO06] to compute the abstraction. It assumes all the
predicates and mirror variables have finite range.

• structural: This approach uses the structural abstraction approach [CDJR09] to compute the ab-
straction. It assumes all the predicates and mirror variables have finite range.

• hybrid: This approach uses the hybrid BDD+SMT abstraction approach [CCF+07, CFG+10] to com-
pute the abstraction. It assumes all the predicates and mirror variables have finite range.

• bdd: This approach uses the BDD existential quantification to compute the abstraction. It assumes
all the predicates and mirror variables have finite range. Moreover, it assumes the input model to be
finite-state (i.e. it must not contain neither real nor integer variables).

cegar.refinement Environment Variable

Specifies the refinement strategy to be used within the CEGAR loop to refine the abstraction when the
abstract counter-example is spurious. Possible values for this variable are:

• itp: (default) It preforms the refinement analyzing the interpolants [McM03] induced by the spurious
counter-example. The counter-example is split in two parts by considering each state of the counter-
example. The first part of the formula consists of the prefix of the counter-example from initial state to
the considered state (included). The second part is the suffix of the counter-example from the consid-
ered state (included) till the last state of the counter-example. The interpolants will be on the variables
corresponding to the considered states (i.e. on the language in the intersection among the two formulas).

• uc: It preforms the refinement analyzing the unsatisfiable core induced by the unsatisfiability in the
concrete model of the abstract counter-example. This approach has a limitation that considers only the
predicates in the extracted unsatisfiability core that do not refer to variables at different states in the
counter-example. (The predicate @(a,0)=@(b,2) where variable a is at state 0 and variable b at state
2 will be discarded. While @(a,0)=@(b,0) will be considered. Both variable refer to the same state.)

• wp: It preforms the refinement computing weakest preconditions induced by the spurious abstract
counter-example.

msat dump format Environment Variable

This variable controls the format used by commands like e.g. msat check invar bmc when option -d is
given to the command. The valid values for this variable are:

• mathsat: (default) This format is the language specific of the MATHSAT [CGSS13] SMT solver.

• smtlib: This format is standard format [BST12] adopted in the SMT competition and accepted by
(almost) all the SMT solvers at the state-of-the-art.

Copyright ©2019 by FBK. 144

nuXmv 2.0.0 User Manual

msat dump frac as float Environment Variable

This is a Boolean variable that specifies the format used while printing counter-examples or while writing
infinite precision Real constants. Its default value is 0, meaning that for instance f’2/3 is used to represent
the rational number 2/3. If set to 1, then the output would be 0.6666666667.

msat native word support Environment Variable

This is a Boolean variable that specifies whether when interacting with the SMT solver to perform upfront
bit-blasting or to pass the words directly to the SMT solver. By default this variable is set to 1, meaning that
the words are passed natively to the SMT solver.

qe.engine Environment Variable

Specifies the high level quantifier elimination engine to be used while computing the abstraction during e.g.
the CEGAR loop. Possible values for this variable are:

• msat: This approach uses ALLSMT [LNO06] to compute the abstraction. It assumes all the predicates
and mirror variables have finite range.

• structural: This approach uses the structural abstraction approach [CDJR09] to compute the ab-
straction. It assumes all the predicates and mirror variables have finite range.

• hybrid: (default) This approach uses the hybrid BDD+SMT abstraction approach [CCF+07,
CFG+10] to compute the abstraction. It assumes all the predicates and mirror variables have finite
range.

qe.hybrid.backjumping enabled Environment Variable

This is a Boolean variable that enables the back-jumping optimization within the TCC encoder [CCF+07,
CFG+10] when the qe.engine is set to hybrid. By default this variable is set to 0, i.e. the optimization is
disabled.

qe.hybrid.dagostino enabled Environment Variable

This is a Boolean variable that enables the D’Agostino optimization when the qe.engine is set to hybrid.
By default this variable is set to 0, i.e. the optimization is disabled.

qe.hybrid.partitioning enabled Environment Variable

This is a Boolean variable that enables the conjunctive partitioning of the formula to abstract when the
qe.engine is set to hybrid. By default this variable is set to 0, i.e. the optimization is disabled.

qe.hybrid.threshold enabled Environment Variable

This is a Boolean variable that enables the use of a threshold for computing the conjunctive partitioning of
the formula to abstract when the qe.engine is set to hybrid. By default this variable is set to 0, i.e. the
optimization is disabled.

qe.hybrid.threshold value Environment Variable

This is an positive integer variable that specifies the maximm size in terms of BDD nodes for each conjuct
of the formula to abstract when the conjunctive partitioning is enabled and the qe.engine is set to hybrid.
By default this variable is set to 300 BDD nodes.

Copyright ©2019 by FBK. 145

nuXmv 2.0.0 User Manual

qe.msat.engine Environment Variable

This variable controls the low level engine used when the qe.engine is set to msat or structural.
Possible values are:

• allsmt: (default) This value specifies to use AllSMT approach. It assumes that all the infinite domain
variables (i.e. real and integer) are quantified out.

• fm: This value specifies to use Fourier-Motzking [Sch98] quantifier elimination technique. It assumes
the model contains real variables and no integer.

• lw: This value specifies to use Loos-Weispfenning [LW93, Mon08] quantifier elimination technique.
It assumes the model contains real variables and no integer.

qe.msat.remove redundant constraints enabled Environment Variable

This is a Boolean variable that enables the optimization that pre-process the formula to remove redundant
part of the formula within the SMT solver. This option takes effect when the qe.engine is set to msat and
the qe.msat.engine is set to lw or fm. By default this variable is set to 0, i.e. the optimization is enabled.

qe.msat.boolean simplifications enabled Environment Variable

This is a Boolean variable that enables the optimization that enables the Boolean simplification of the
formula within the SMT solver. This option takes effect when the qe.engine is set to msat and the
qe.msat.engine is set to lw or fm. By default this variable is set to 0, i.e. the optimization is enabled.

qe.msat.top level propagation enabled Environment Variable

This is a Boolean variable that enables the optimization within the SMT solver to push quantifiers inside the
formula. This option takes effect when the qe.engine is set to msat and the qe.msat.engine is set to lw
or fm. By default this variable is set to 0, i.e. the optimization is enabled.

qe.structural.analyze conjuncts enabled Environment Variable

This is a Boolean variable that enables the analysis of the possible conjuncts of the formula to abstract to see
whether pushing of quantifiers could be performed. This option takes effect when the qe.engine is set to
structural. By default this variable is set to 0, i.e. the optimization is disabled.

qe.structural.assert conjuncts enabled Environment Variable

This is a Boolean variable that enables the assertion in the SMT solver of all the partial results of quantifica-
tion of the conjuncts of the formula to abstract while performing the quantification. This option takes effect
when the qe.engine is set to structural. By default this variable is set to 0, i.e. the optimization is
disabled.

qe.structural.core engine Environment Variable

This variable specifies the core engine used to perform quantifier elimination when the qe.engine is set to
structural. By default this variable is set to hybrid, i.e. the engine used is the BDD+SMT approach
of [CCF+07, CFG+10].

qe.structural.dagostino enabled Environment Variable

Copyright ©2019 by FBK. 146

nuXmv 2.0.0 User Manual

This is a Boolean variable that enables the D’Agostino optimization when the qe.engine is set to
structural. By default this variable is set to 0, i.e. the optimization is disabled.

qe.structural.dnf enabled Environment Variable

This is a Boolean variable that enables the conversion of the formula to quantify in Disjunctive Normal Form
(DBF) when the qe.engine is set to structural. By default this variable is set to 0, i.e. the optimization
is disabled.

qe.structural.genbdds enabled Environment Variable

This is a Boolean variable that enables the generation of intermediate BDDs for each leaf (quantifier free
formula resulting from the quantifier elimination) element of the formula to quantify when the qe.engine
is set to structural. By default this variable is set to 0, i.e. the optimization is disabled.

qe.structural.incrementality enabled Environment Variable

This is a Boolean variable that enables the exploitation of the incrementality of the SMT solver while per-
forming the quantification of the formula to abstract when the qe.engine is set to structural. By default
this variable is set to 0, i.e. the optimization is disabled.

qe.structural.inlining enabled Environment Variable

This is a Boolean variable that enables the inlining of equalities while performing the quantification of the
formula to abstract when the qe.engine is set to structural. By default this variable is set to 0, i.e. the
optimization is disabled.

qe.structural.inlining value Environment Variable

This variable affects the behavior of the code that performs the inlining of expressions. In particular it
specifies the number of iterations to perform to discover possible equivalences to perform the inlining of
conjuncts. Default value is 0, i.e. perform a fix-point.

qe.structural.low level enabled Environment Variable

This is a Boolean variable that enables the low level quantifier optimizations [CDJR09] while performing
the quantification of the formula to abstract when the qe.engine is set to structural. By default this
variable is set to 1, i.e. the optimization is enabled.

qe.structural.preassert conjuncts enabled Environment Variable

This is a Boolean variable that enables the pre-assertion in the SMT solver of all the conjuncts, if any, of the
formula to abstract when the qe.engine is set to structural. By default this variable is set to 0, i.e. the
optimization is disabled.

qe.structural.varsampling enabled Environment Variable

This is a Boolean variable that enables the variable sampling optimization [CDJR09] while performing the
quantification of the formula to abstract when the qe.engine is set to structural. By default this variable
is set to 1, i.e. the optimization is enabled.

write xmi max word width Environment Variable

Copyright ©2019 by FBK. 147

nuXmv 2.0.0 User Manual

This variable controls the maximum number of bits allowed for the bit vectors when dumping the model in
XMI format with the command write xmi model. The default value is 6.

Remark: Large values may lead to huge times in dumping the XMI format. Indeed, for each value of the
word an XMI state may be created.

expand wordarrays Environment Variable

This variable controls if word-array variables are expanded into individual word variables or not. By doing
the expansion, the expressions containing word-array variables are also modified, i.e. = and := between
array expressions is pushed to each index subscript, READ is converted to a index subscript operator [], and
WRITE is treated as with if-then-else expression.

• 0: (default) No expansion is performed.

• 1: Expansion is performed.

There is another way to expanding word-array variables: by using -e option during flattening of the design.
See flatten hierarchy command in Section 4

5.12 Commands for Parameter Synthesis

show param synth problems - Shows the parameter synthesis problems Command [F,I]

show param synth problems [-h] [[-s | -u] | [[-n prob no] | [-P prob name
]]]

It prints the set of parameter synthesis problems that have been specified so far. Few filters are provided to
only print solved or unsolved problems, or to print only a specified problem (either via its unique id number
in the parameter synthesis problem data base, or with its unique name).

Command Options:

-h Shows a brief description of the available options.
-s Prints only solved problems
-u Prints only not solved problems
-n prob no Prints only problem prob no

-P prob name Prints only problem named "prob name"

show param synth problems - Shows the parameter synthesis problems Command [F,I]

show param region [-h] -n prob no | -P prob name

It printes the region of parameter for the specified problem. If the region has not yet been computed, the user
is informed.

Command Options:

-h Shows a brief description of the available options.
-n prob no Prints the region for problem prob no

-P prob name Prints the region for problem named "prob name"

Copyright ©2019 by FBK. 148

nuXmv 2.0.0 User Manual

synth params - Synthetize a region of parameters Command [F,I]

synth param [-h] [-h] [-i] [-c] [-s] [-v] [-a alg] [-n prob no | -P
prob-name | -p prob str]

Computes the region of parameters for the specified parameter synthesis problems

When the domain is infinite (or when forced explicitly with option -i, the msatic3 library is used to solve
the problem.

IMPORTANT: When the domain is infinite, the parameter synthesis problem is in general undecidable
(as well as the verification problem) and this command may fail in synthesising the
parameters. In particular, it may not terminate or it may terminate with an unknown
result when it cannot refine the abstraction (this may be due to the presence of mixed
integer/real predicates).

Command Options:

-h Shows a brief description of the available options.
-i Forces the use of the engine for infinite domains (msatic3).
-c Enables region validation.
-s Enables region simplification via BDD (it applies only to finite states

parameters).
-V Disables the print of the computed regions for each solved problem.
-a alg Solves the problme using the specified algorithm.

• ic3 uses Pure IC3 (only invariants, i.e., G(expr))

• bmc used Pure BMC algorithm

• bmc ic3 uses a combination of BMC and K-Live with IC3 (default)

-n number Checks the INVAR property with index number in the property database.
-P name Checks the property syntheis problem named name in the parameter synthe-

sis problem database.
-p "prob str" The command line specified parameter synthesis problem. Where

"prob str" is a string (surrounded by ") of the form "name := {
id list | ltl expr [, MAX|MIN (simple expr)] } [IN
context]" and context is the module instance name in which all the
variables in ltl expr must be evaluated in.

Copyright ©2019 by FBK. 149

nuXmv 2.0.0 User Manual

Chapter 6

Commands of timed NUXMV

In the following we present the commands provided by NUXMV when the system operates on timed domain.
These commands are only available if the -time command line option has been specified. Similarly to the case of
the commands inherited from NUSMV, we also describe the environment variables that may affect the behavior
of the commands. These commands are time aware and allow to process timed models.

6.1 Commands for Initialization

time setup - Initializes the system for the verification of timed models via SMT. Command

time setup [-h]

This command initializes the system for verification of timed finite and infinite state systems.

go time - Initializes the system for the infinite state verification of timed models
via SMT.

Command

go time [-h]

This command initializes the system for verification of timed finite and infinite state systems. It is
equivalent to the command sequence read model, flatten hierarchy, encode variables,
build flat model.

If some commands have already been executed, then only the remaining ones will be invoked.

6.2 Commands for Invariant Checking
In this section we describe the command for checking invariants in timed models.

timed check invar - Invariant property check. Command

timed check invar [-h | -n idx | -p "formula" | -P "name"] [-b] [-k N]
[-a 0|1]

This command performs invariant checking of a timed model.

Command Options:

Copyright ©2019 by FBK. 150

nuXmv 2.0.0 User Manual

-h Shows a brief description of the available options
-n idx Checks the invariant (INVARSPEC) property specified with idx
-p "formula" Checks the specified invariant property
-P name Checks the invariant property with given name
-b Use BMC, default : ic3
-k max len Maximum bound for bmc or ic3, instead of using the variable bmc length

value.
-a 0|1 If true, enable abstraction/refinement; it can not be used with -b.

6.3 Commands for LTL Model Checking
In this section we describe the command for checking LTL properties in timed models.

timed check ltlspec - LTL property check. Command

timed check ltlspec [-h | -n idx | -p "formula" | -P "name"] [-b] [-k N]

This command performs LTL property checking on a timed model.

Command Options:

-h Shows a brief description of the available options
-n idx Checks the LTL (LTLSPEC) property specified with idx
-p "formula" Checks the specified LTL property
-P name Checks the LTL property with given name
-b Use BMC, default : ic3
-k max len Maximum bound for bmc or ic3, instead of using the variable bmc length

value.

6.4 Command for dumping discrete model
In this section we describe a command that could be used to dump the discrete model corresponding to the timed
one.

write untimed model - Dump corresponding discrete model Command

write untimed model [-h] [-s] [-o "file name"]

This command dumps on the specified file, or stdout if not specified, the discrete model corresponding to the
timed one.

Command Options:

-h Shows a brief description of the available options
-s Discard specifications when dumping the discrete model
-o "file name" Allows to dump the discrete model on the specified file

Copyright ©2019 by FBK. 151

nuXmv 2.0.0 User Manual

6.5 Timed Simulation Commands
In this section we describe the commands that allow to simulate a NUXMV timed specification. See also the
section Section 6.7 [Time aware traces], page 154 that describes the commands available for manipulating time
aware traces.

timed pick state - Picks a state from the set of initial states Command

timed pick state [-h] [-v] [-i [-a]] [-c "constr" | -s trace.state]

Chooses an element from the set of initial states, and makes it the current state (replacing the old
one). The chosen state is stored as the first state of a new trace ready to be lengthened by steps states by
the timed simulate command. The state can be chosen according to different policies which can be
specified via command line options. By default the state is chosen in a deterministic way.

Command Options:

-v Verbosely prints out chosen state (all state and frozen variables, otherwise it
prints out only the label t.1 of the state chosen, where t is the number of
the new trace, that is the number of traces so far generated plus one).

-i Enables the user to interactively pick up an initial state. The user is requested
to choose a state from a list of possible items (every item in the list doesn’t
show frozen and state variables unchanged with respect to a previous item).
If the number of possible states is too high, then the user has to specify some
further constraints as “simple expression”.

-a Displays all state and frozen variables (changed and unchanged with respect
to a previous item) in an interactive picking. This option works only if the
-i options has been specified.

-c "constraints" Uses constraints to restrict the set of initial states in which the state has
to be picked. constraints must be enclosed between double quotes " ".

-s trace.state Picks state from trace.state label. A new simulation trace will be created by
copying prefix of the source trace up to specified state.

timed simulate - Performs a simulation from the current selected state Command

timed simulate [-h] [-v] [-l] [-i [-a]] [[-c "simple expr"] | [-t
"next expr"]] [-k length]

Generates a sequence of at most steps states (representing a possible execution of the model), starting from
the current state. The current state must be set via the timed pick state command.

It is possible to run the simulation in two ways (according to different command line policies): deterministic
(the default mode), interactive.

The resulting sequence is stored in a trace indexed with an integer number taking into account the total
number of traces stored in the system. There is a different behavior in the way traces are built, according
to how current state is set: current state is always put at the beginning of a new trace (so it will contain at
most steps + 1 states) except when it is the last state of an existent old trace. In this case the old trace is
lengthened by at most steps states.

Copyright ©2019 by FBK. 152

nuXmv 2.0.0 User Manual

Command Options:

-v Verbosely prints current generated trace (changed and unchanged state and
frozen variables).

-l Performs look-ahead while doing the simulation to see whether the trace can
be extended, thus trying to avoid deadlocks.

-i Enables the user to interactively choose every state of the trace, step by step.
If the number of possible states is too high, then the user has to specify some
constraints as simple expression. These constraints are used only for a sin-
gle simulation step and are forgotten in the following ones. They are to be
intended in an opposite way with respect to those constraints eventually en-
tered with the pick state command, or during an interactive simulation
session (when the number of future states to be displayed is too high), that
are local only to a single step of the simulation and are forgotten in the next
one.
To improve readability of the list of the states which the user must pick
one from, each state is presented in terms of difference with respect of the
previous one.

-a Displays all the state and frozen variables (changed and unchanged) during
every step of an interactive session. This option works only if the -i option
has been specified.

-c "constraints" Performs a simulation in which computation is restricted to states satisfy-
ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints does not exist: in that
case a trace with a number of states less than steps is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion cannot contain next operators, and is automatically shifted by one state
in order to constraint only the next steps

-t "constraints" Performs a simulation in which computation is restricted to states satisfy-
ing those constraints. The desired sequence of states could not exist if
such constraints were too strong or it may happen that at some point of the
simulation a future state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than steps is obtained. Note:
constraints must be enclosed between double quotes " ". The expres-
sion can contain next operators, and is NOT automatically shifted by one
state as done with option -c

-k steps Maximum length of the path according to the constraints. The length of a
trace could contain less than steps states: this is the case in which sim-
ulation stops in an intermediate step because it may not exist any future
state satisfying those constraints. The default value is determined by the
default simulation steps environment variable

6.6 Timed Execution Commands
In this section we describe the commands that allow to perform time aware trace re-execution on a given model.
See also the section Section 6.7 [Time aware traces], page 154 that describes the commands available for manip-
ulating traces.

execute traces - Executes complete time aware traces on the model FSM Command

Copyright ©2019 by FBK. 153

nuXmv 2.0.0 User Manual

execute traces [-h] [-v] [-m | -o output-file] -e engine [-a |
trace number]

Executes time aware traces stored in the Trace Manager. If no trace is specified, last registered trace is
executed. Traces must be complete in order to perform execution.

Command Options:

-v Verbosely prints traces execution steps.
-a Prints all the currently stored traces.
-m Pipes the output through the program specified by the PAGER shell variable

if defined, else through the UNIX command “more”.
-o output-file Writes the output generated by the command to output-file.
-e engine Selects an engine for trace re-execution.
trace number The (ordinal) identifier number of the trace to be printed. This must be the

last argument of the command. Omitting the trace number causes the most
recently generated trace to be executed.

execute partial traces - Executes partial time aware traces on the model FSM Command

execute partial traces [-h] [-v] [-r] [-m | -o output-file] -e engine
[-a | trace number]

Executes time aware traces stored in the Trace Manager. If no trace is specified, last registered trace is
executed. Traces are not required to be complete. Upon succesful termination, a new complete trace is
registered in the Trace Manager.

Command Options:

-v Verbosely prints traces execution steps.
-a Prints all the currently stored traces.
-r Performs restart on complete states. When a complete state (i.e. a state

which is non-ambiguosly determined by a complete assignment to state vari-
ables) is encountered, the re-execution algorithm is re-initialized, thus reduc-
ing computation time.

-m Pipes the output through the program specified by the PAGER shell variable
if defined, else through the UNIX command “more”.

-o output-file Writes the output generated by the command to output-file.
-e engine Selects an engine for trace re-execution.
trace number The (ordinal) identifier number of the trace to be printed. This must be the

last argument of the command. Omitting the trace number causes the most
recently generated trace to be executed.

6.7 Time aware traces
The following commands are available for time aware traces: show traces, read trace,
execute traces and execute partial traces.
They have the same syntax of the ones defined in 4.7.3 but they have the additional capability to handle traces
with 2 kinds of transitions: discrete or delta.
The same plugins described in 4.8 are available, traces of timed models contain additional infomation that allows
to distinguish discrete transitions from delta transitions.

Copyright ©2019 by FBK. 154

nuXmv 2.0.0 User Manual

6.7.1 Basic Trace Explainer
The trace explainer described in 4.8.1 is extended by adding before every state the information about the transition
type. The syntax is either :

-- [discrete transition] --

for discrete transitions,

-- [time elapse: time = time val; delta = N] --

for delta transitions not in a loop, where N is a number that represents the amount of time elapsed and time val

is the value of time in the previous step or diverging if the transition is in a loop in which time diverges.

6.7.2 States/Variables Table
The state/varialbes table described in 4.8.2 is extended by adding on the states axis either :

[D]

for discrete transitions or

[T N]

for delta transitions, where N is a number that represents the amount of time elapsed.

6.7.3 XML Format Printer
The XML format printer described in 4.8.3 is extended with the additional tag:

<transition type="discrete"></transition>

to label the current transition as discrete and

<transition type="timed" from="init time" to="next time" delta="d val"></transition>

if the transition is a delta transition, init time is the value of time when the transition begins, next time is the
value of time when the transition ends and d val is the amount of time elapsed. N is a number that represents the
amount of time elapsed. The new tag is placed between each pair of node tags and gives information about the
transition from the previous node to the following one. where var name is the name of the variable and value is
the constant value that such variable assumes in the delta transition.

6.7.4 XML Format Reader
Time aware traces can be loaded in the same way of other traces, as described in 4.8.4, using the command
read trace.

Copyright ©2019 by FBK. 155

nuXmv 2.0.0 User Manual

Chapter 7

Running NUXMV batch

nuXmv so far provides an batch interaction inherited from the original NUSMV. We report here the different
command line options provided both by NUSMV and by nuXmv.

When the -int option is not specified, nuXmv runs as a batch program, in the style of SMV, performing
(some of) the steps described in previous section in a fixed sequence.

system prompt> nuXmv [command line options] input-file <RET>

The program described in input-file is processed, and the corresponding finite state machine is built. Then, if
input-file contains formulas to verify, their truth in the specified structure is evaluated. For each formula which is
not true a counterexample is printed.
The batch mode can be controlled with the following command line options:

nuXmv [-h | -help] [-v vl] [-int]
[[-source script_file | -load script_file]]
[-s] [-old] [-old_div_op] [-smv_old]
[-disable_syntactic_checks]
[-keep_single_value_vars]
[-disable_daggifier] [-dcx] [-cpp] [-pre pps]
[-ofm fm file] [-obm bm file] [-lp]
[-n idx] [-is] [-ic] [-ils] [-ips] [-ii] [-ctt]
[[-f] [-r]]|[-df] [-flt] [-AG]
[-coi] [-i iv file] [-o ov file]
[-t tv file] [-reorder] [-dynamic] [-m method]
[-disable_sexp2bdd_caching] [-bdd_soh heuristics]
[[-mono]|[-thresh cp t]|[-cp cp t]|[-iwls95 cp t]]
[-noaffinity] [-iwls95preorder]
[-bmc] [-bmc length k]
[-sat solver name] [-sin on|off] [-rin on|off] [-time]
[-ojeba algorithm] [-ewa] [input-file]

where the meaning of the options is described below. If input-file is not provided in batch mode, then the model
is read from standard input.

Copyright ©2019 by FBK. 156

nuXmv 2.0.0 User Manual

-help

-h Prints the command line help.
-v verbose-level Enables printing of additional information on the internal operations of

nuXmv. Setting verbose-level to 1 gives the basic information. Using this
option makes you feel better, since otherwise the program prints nothing un-
til it finishes, and there is no evidence that it is doing anything at all. Setting
the verbose-level higher than 1 enables printing of much extra information.

-int Enables interactive mode
-source sc file Executes nuXmv commands from file sc file

-load sc file same as -source (deprecated)
-s Avoids to load the nuXmv commands contained in ∼/.nusmvrc or in

.nusmvrc or in ${NUXMV LIBRARY PATH }/master.nusmvrc.

-old
Keeps backward compatibility with older versions of nuXmv. This option
disables some new features like type checking and dumping of new exten-
sion to SMV files. In addition, if enabled, case conditions also accepts “1”
which is semantically equivalent to the truth value “TRUE”. This backward
compatibility feature has been added in NUSMV 2.5.1 in order to help port-
ing of old SMV models. Infact, in versions older than 2.5.1, it was pretty
common to use 1 in case conditions expressions. For an example please see
the NUSMV user manual [CCCJ+10].

-old div op Enables the old semantics of “/” and “mod” operations (from NUSMV
2.3.0) instead of ANSI C semantics.

-disable syntactic
checks

Disables all syntactic checks that will be performed when flattening the input
model. Warning: If the model is not well-formed, nuXmv may result in
unpredictable results, use this option at your own risk.

-disable daggifierDisables the daggification feature of model dumping
-keep single
value vars

Does not convert variables that have only one single possible value into con-
stant DEFINEs

-dcx Disables the generation of counter-examples for properties that are proved
to be false. See also variable counter examples

-cpp Runs pre-processor on SMV files before any of those specified with the -pre
option.

-pre pps Specifies a list of pre-processors to run (in the order given) on the input file
before it is parsed by nuXmv. Note that if the -cpp command is used, then
the pre-processors specified by this command will be run after the input file
has been pre-processed by that pre-processor. pps is either one single pre-
processor name (with or without double quotes) or it is a space-separated list
of pre-processor names contained within double quotes.

Copyright ©2019 by FBK. 157

nuXmv 2.0.0 User Manual

-ofm fm file Prints flattened model to file fn file
-obm bm file Prints boolean model to file bn file
-lp Lists all properties in SMV model
-n idx Specifies which property of SMV model should be checked
-is Does not check SPEC properties. Sets to “1” the ignore spec environ-

ment variable.
-ic Does not check COMPUTE properties. Sets to “1” the ignore compute

environment variable.
-ils Does not check LTLSPEC properties. Sets to “1” the ignore ltlspec

environment variable.
-ips Does not check PSLSPEC properties. Sets to “1” the ignore pslspec

environment variable.
-ii Does not check INVARSPEC properties. Sets to “1” the

ignore invariant environment variable.
-ctt Checks whether the transition relation is total.
-f Computes the set of reachable states before evaluating CTL expressions.

Since NuSMV-2.4.0 this option is set by default, and it is provided for back-
ward compatibility only. See also option -df.

-r Prints the number of reachable states before exiting. If the -f option is not
used, the set of reachable states is computed.

-df Disable the computation of the set of reachable states. This option is pro-
vided since NuSMV-2.4.0 to prevent the computation of reachable states that
are otherwise computed by default.

-flt Forces the computation of the set of reachable states for the tableau resulting
from BDD-based LTL model checking (command check ltlspec). If
the option -flt is not specified (default), the resulting tableau will inherit
the computation of the reachable states from the model, if enabled. If the
option -flt is specified, the reachable states set will be calculated for the
model and for the tableau resulting from LTL model checking. This might
improve performances of the command check ltlspec, but may also
lead to a dramatic slowing down. This options has effect only when the
calculation of reachable states is enabled (see -f).

-AG Verifies only AG formulas using an ad hoc algorithm (see documentation for
the ag only search environment variable).

-coi Enables cone of influence reduction. Sets to “1” the cone of influence
environment variable. We remark that, when cone of influence reduction is
enabled, a counter-example trace for a property that does not hold may not
be a valid counter-example trace for the original model. We refer the reader
to the Frequently Asked Questions (FAQ) [FAQ].

Copyright ©2019 by FBK. 158

nuXmv 2.0.0 User Manual

-i iv file Reads the variable ordering from file iv file.
-o ov file Writes the variable ordering to file ov file.
-t tv file Reads a variable list from file tv file. This list defines the order for clustering

the transition relation. This feature has been provided by Wendy Johnston,
University of Queensland. The results of Johnston’s et al. research have
been presented at FM 2006 in Hamilton, Canada. See [WJKWLvdBR06].

-reorder Enables variable reordering after having checked all the specification if any.
-dynamic Enables dynamic reordering of variables

-m method Uses method when variable ordering is enabled. Possible values for method
are those allowed for the reorder method environment variable (see the
NUSMV user manual [CCCJ+10]).

-disable sexp2bdd caching
Sets the default value of environment variable enable bdd cache to 0,
i.e. the evaluation of symbolic expression to ADD and BDD representations
are not cached. See command clean sexp2bdd cache for reasons of
why BDD cache should be disabled sometimes.

-bdd soh heuristics Sets the default value of environment variable
bdd static order heuristics to heuristics, i.e. the op-
tion sets up the heuristics to be used to compute BDD ordering statically
by analyzing the input model. See the documentation about variable
bdd static order heuristics in the NUSMV user manual
[CCCJ+10] for more details.

-mono Enables monolithic transition relation
-thresh cp t conjunctive partitioning with threshold of each partition set to cp t (DE-

FAULT, with cp t=1000)
-cp cp t DEPRECATED: use thresh instead.
-iwls95 cp t Enables Iwls95 conjunctive partitioning and sets the threshold of each parti-

tion to cp t
-noaffinity Disables affinity clustering
-iwls95preoder Enables Iwls95CP preordering
-bmc Enables BMC instead of BDD model checking (works only for LTL proper-

ties and PSL properties that can be translated into LTL)
-bmc length k Sets bmc length variable, used by BMC
-sat solver name Sets sat solver variable, used by BMC so select the sat solver to be used.
-sin on,off Enables (on) or disables (off) Sexp inlining, by setting system variable

sexp inlining. Default value is off.
-rin on,off Enables (on) or disables (off) RBC inlining, by setting system variable

rbc inlining. Default value is on. The idea about inlining was taken
from [ABE00] by Parosh Aziz Abdulla, Per Bjesse and Niklas Eén.

-time Specifies the input file is a timed model and as such it shall be interpreted.
If -time is specified, then the input file shall start with @TIME DOMAIN

continuous.

Copyright ©2019 by FBK. 159

nuXmv 2.0.0 User Manual

-ojeba algorithm Sets the algorthim used for BDD-based language emptiness
of Büchi fair transition systems by setting system variable
oreg justice emptiness bdd algorithm (default is EL bwd).
The available algorithms are: EL bwd EL fwd

-ewa Enables the expansion of wordarray variables, by setting the system variable
expand wordarrays.

Copyright ©2019 by FBK. 160

nuXmv 2.0.0 User Manual

Bibliography

[ABE00] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on sat-solvers. In
Proceedings of Tools and Algorithms for Construction and Analysis of Systems, 6th Interna-
tional Conference, TACAS 2000, volume 1785 of Lecture Notes in Computer Science, pages
411–425. Springer, 2000.

[AFF+07] Roy Armoni, Limor Fix, Ranan Fraer, Tamir Heyman, Moshe Y. Vardi, Yakir Vizel, and Yael
Zbar. Deeper Bound in BMC by Combining Constant Propagation and Abstraction. In ASP-
DAC, pages 304–309. IEEE, 2007.

[BCCZ99a] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds. In Tools
and Algorithms for Construction and Analysis of Systems, In TACAS’99, March 1999.

[BCCZ99b] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In Rance Cleaveland, editor, TACAS, volume 1579 of LNCS, pages
193–207. Springer, 1999.

[BHJ+06] Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Latvala, and Viktor Schuppan. Linear
encodings of bounded ltl model checking. Logical Methods in Computer Science, 2(5), 2006.

[BHW11] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER, 2011. http://fmv.jku.at/
aiger/.

[Boo] The Boolector Boolector SMT solver. http://fmv.jku.at/boolector/.

[Bra11] Aaron R. Bradley. Sat-based model checking without unrolling. In Ranjit Jhala and David A.
Schmidt, editors, VMCAI, volume 6538 of LNCS, pages 70–87. Springer, 2011.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability mod-
ulo theories. In Handbook of Satisfiability, pages 825–885. IOS Press, 2009.

[BST12] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0, 2012.
http://smtlib.cs.uiowa.edu/docs.html.

[CCCJ+10] R. Cavada, A. Cimatti, E. Olivetti C.A. Jochim, G. Keighren, M. Pistore, M. Roveri, and
A. Tchaltsev. NuSMV 2.5 User Manual, 2010.

[CCF+07] Roberto Cavada, Alessandro Cimatti, Anders Franzén, Krishnamani Kalyanasundaram,
Marco Roveri, and R. K. Shyamasundar. Computing Predicate Abstractions by Integrating
BDDs and SMT Solvers. In FMCAD, pages 69–76. IEEE Computer Society, 2007.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pis-
tore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In Ed Brinksma and Kim Guldstrand Larsen, editors,
CAV, volume 2404 of LNCS, pages 359–364. Springer, 2002.

[CDJR09] Alessandro Cimatti, Jori Dubrovin, Tommi A. Junttila, and Marco Roveri. Structure-aware
computation of predicate abstraction. In FMCAD, pages 9–16. IEEE, 2009.

Copyright ©2019 by FBK. 161

http://fmv.jku.at/aiger/
http://fmv.jku.at/aiger/
http://fmv.jku.at/boolector/
http://smtlib.cs.uiowa.edu/docs.html

nuXmv 2.0.0 User Manual

[CFG+10] Alessandro Cimatti, Anders Franzén, Alberto Griggio, Krishnamani Kalyanasundaram, and
Marco Roveri. Tighter integration of BDDs and SMT for Predicate Abstraction. In DATE,
pages 1707–1712. IEEE, 2010.

[CG12] Alessandro Cimatti and Alberto Griggio. Software model checking via ic3. In P. Madhusudan
and Sanjit A. Seshia, editors, CAV, volume 7358 of Lecture Notes in Computer Science, pages
277–293. Springer, 2012.

[CGH97a] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at ltl model checking. In Formal
Methods in System Design, 10(1):57–71, February 1997.

[CGH97b] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another Look at LTL Model
Checking. Formal Methods in System Design, 10(1):47–71, 1997.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[CGMT14a] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Ic3 modulo theories
via implicit predicate abstraction. In TACAS, 2014.

[CGMT14b] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Verifying ltl prop-
erties of hybrid systems with k-liveness. Technical report, Fondazione Bruno Kessler, 2014.
Under review.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. The
MathSAT5 SMT Solver. In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795
of LNCS, pages 93–107. Springer, 2013.

[CMBK09] Michael L. Case, Hari Mony, Jason Baumgartner, and Robert Kanzelman. Enhanced verifica-
tion by temporal decomposition. In FMCAD, pages 17–24. IEEE, 2009.

[CS12] Koen Claessen and Niklas Sörensson. A liveness checking algorithm that counts. In Gianpiero
Cabodi and Satnam Singh, editors, FMCAD, pages 52–59. IEEE, 2012.

[EF06] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL (Series on Integrated Circuits
and Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[EL86] E. Emerson and C. Lei. Efficient model checking in fragments of the propositional mu-
calculus (extended abstract). In LICS, pages 267–278. IEEE Computer Society, 1986.

[EMSS91] E. Allen Emerson, A. K. Mok, A. Prasad Sistla, and Jai Srinivasan. Quantitative temporal
reasoning. In Edmund M. Clarke and Robert P. Krushan, editors, Proceedings of Computer-
Aided Verification (CAV’90), volume 531 of LNCS, pages 136-145, Berlin, Germany, June
1991.

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and Ar-
mando Tacchella, editors, SAT, volume 2919 of LNCS, pages 502–518. Springer, 2003.

[ES04] Niklas Eén and Niklas Sörensson. Temporal induction by incremental sat solving. In Ofer
Strichman and Armin Biere, editors, Electronic Notes in Theoretical Computer Science, vol-
ume 89. Elsevier, 2004.

[FAQ] Frequently Asked Questions (FAQ). Available at http://nusmv.fbk.eu/faq.html
or within the NUSMV distribution package.

[HBS13] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Better generalization in ic3. In FMCAD,
pages 157–164. IEEE, 2013.

[HKQ03] T. A. Henzinger, O. Kupferman, and S. Qadeer. From Pre-historic to Post-modern symbolic
model checking. Formal Methods in System Design, 23(3):303–327, 2003.

Copyright ©2019 by FBK. 162

http://nusmv.fbk.eu/faq.html

nuXmv 2.0.0 User Manual

[KHL05] T. Junttila K. Heljanko and T. Latvala. Incremental and complete bounded model checking
for full PLTL. In K. Etessami and S. K. Rajamani, editors, Computer Aided Verification, 17th

International Conference CAV 2005, number 3576 in Lecture Notes in Computer Science,
pages 98–111. Springer, 2005.

[LBHJ05] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple is better: Efficient bounded model
checking for past LTL. In R. Cousot, editor, Verification, Model Checking, and Abstract
Interpretation, 6th International Conference VMCAI 2005, number 3385 in Lecture Notes in
Computer Science, pages 380–395. Springer, 2005.

[LNO06] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT Techniques for Fast
Predicate Abstraction. In Thomas Ball and Robert B. Jones, editors, CAV, volume 4144 of
LNCS, pages 424–437. Springer, 2006.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination. Computer
Journal, 36(5):450–462, 1993.

[McM99] Kenneth L. McMillan. Circular compositional reasoning about liveness. In Pierre and Kropf
[PK99], pages 342–345.

[McM03] Kenneth L. McMillan. Interpolation and sat-based model checking. In Warren A. Hunt Jr.
and Fabio Somenzi, editors, CAV, volume 2725 of Lecture Notes in Computer Science, pages
1–13. Springer, 2003.

[McM04] Kenneth L. McMillan. An interpolating theorem prover. In Kurt Jensen and Andreas Podelski,
editors, TACAS, volume 2988 of LNCS, pages 16–30. Springer, 2004.

[MHS00] Moon, Hachtel, and Somenzi. Border-block tringular form and conjunction schedule in image
computation. In FMCAD, 2000.

[Mon08] David Monniaux. A Quantifier Elimination Algorithm for Linear Real Arithmetic. In Iliano
Cervesato, Helmut Veith, and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning - LPAR, volume 5330 of LNCS, pages 243–257. Springer, 2008.

[PK99] Laurence Pierre and Thomas Kropf, editors. Correct Hardware Design and Verification Meth-
ods, 10th IFIP WG 10.5 Advanced Research Working Conference, CHARME ’99, Bad Her-
renalb, Germany, September 27-29, 1999, Proceedings, volume 1703 of Lecture Notes in
Computer Science. Springer, 1999.

[PSL] Language Front-End for Sugar Foundation Language.
http://www.haifa.il.ibm.com/projects/verification/sugar/parser.html.

[psl03] Accellera, Property Specification Language - Reference Manual - Version 1.01.
http://www.eda.org/vfv/docs/psl lrm-1.01.pdf, April 2003.

[RAP+95] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient bdd algorithms
for fsm synthesis and verification. In In IEEE/ACM Proceedings International Workshop on
Logic Synthesis, Lake Tahoe (NV), May 1995.

[Sch98] Alexander Schrijver. Theory of Linear and Integer Programming. J. Wiley & Sons, 1998.

[She04] Daniel Sheridan. The optimality of a fast cnf conversion and its use with sat. In SAT, 2004.

[Som98] F. Somenzi. Cudd: Cu decision diagram package — release 2.2.0. In Department of Electrical
and Computer Engineering — University of Colorado at Boulder, May 1998.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using in-
duction and a sat-solver. In Warren A. Hunt Jr. and Steven D. Johnson, editors, FMCAD,
volume 1954 of LNCS, pages 108–125. Springer, 2000.

Copyright ©2019 by FBK. 163

nuXmv 2.0.0 User Manual

[TCP08] Dina Thomas, Supratik Chakraborty, and Paritosh K. Pandya. Efficient guided symbolic
reachability using reachability expressions. STTT, 10(2):113–129, 2008.

[Ton09] Stefano Tonetta. Abstract model checking without computing the abstraction. In Ana Caval-
canti and Dennis Dams, editors, FM, volume 5850 of LNCS, pages 89–105. Springer, 2009.

[VG09] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In FMCAD,
pages 1–8. IEEE, 2009.

[VGS12] Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy abstraction and sat-based reachability
in hardware model checking. In Gianpiero Cabodi and Satnam Singh, editors, FMCAD, pages
173–181. IEEE, 2012.

[WJKWLvdBR06] P. A. Strooper W. Johnston K. Winter L. van den Berg and P. Robinson. Model-based variable
and transition orderings for efficient symbolic model checking. In FM 2006: Formal Methods,
number 4085 in Lecture Notes in Computer Science, pages 524–540. Springer Berlin, 2006.

Copyright ©2019 by FBK. 164

nuXmv 2.0.0 User Manual

Appendix A

Typing and Production Rules

Copyright ©2019 by FBK. 165

nuXmv 2.0.0 User Manual

Appendix B

Typing Rules

This appendix gives the explicit formal typing rules for NUXMV’s input language, as well as notes on implicit
conversion and casting.

In the following, an atomic constant is defined as being any sequence of characters starting with a character in
the set {A-Za-z } and followed by a possible empty sequence of characters from the set {A-Za-z0-9 $#-\}. An
integer is any whole number, positive or negative.

B.1 Types
The main types recognised by NUXMV are as follows:

boolean

integer

real

clock

symbolic enum

integers-and-symbolic enum

boolean set

integer set

symbolic set

integers-and-symbolic set

unsigned word[N] (where N is any whole number ≥ 1)

signed word[N] (where N is any whole number ≥ 1)

For more detalied description of existing types see Section 2.1 [Types], page 8.

B.2 Implicit Conversion
There is only one kind of implicit convertion. For more information on type ordering see Section 2.2.1 [Implicit
Type Conversion], page 11.

Implicit type convertions changes the type of an expression to its counterpart set type. The Figure B.2 shows
the direction of such convertions. For more information on set types and their counterpart types see Section 2.1.10
[Set Types], page 10.

Copyright ©2019 by FBK. 166

nuXmv 2.0.0 User Manual

boolean
integer symbolic enum
↓ ↓

integers-and-symbolic enum

unsigned word[1]

unsigned word[2]

unsigned word[3]
. . .

boolean set
integer set symbolic set

↓ ↓
integers-and-symbolic set

signed word[1]

signed word[2]

signed word[3]
. . .

Figure B.1: The ordering on the types in NUSMV

boolean→ boolean set
integer→ integer set
symbolic enum→ symbolic set
integers-and-symbolic enum→ integers-and-symbolic set

Figure B.2: Implicit convertion to counterpart set types

B.3 Type Rules
The type rules are presented below with the operators on the left and the signatures of the rules on the right. To
save space, more than one operator may be on the left-hand side, and it is also the case that an individual operator
may have more than one signature. For more information on these expressions and their type rules see Section 2.2
[Expressions], page 10.

Constants

boolean constant : boolean
integer constant : integer
symbolic constant : symbolic enum
word constant : unsigned word[N] or signed word[N] (where N is the number of bits required)
range constant : integer set

Variable and Define

variable identifier : Type (where Type is the type of the variable)
define identifier : Type (where Type is the type of the define’s expression)

Copyright ©2019 by FBK. 167

nuXmv 2.0.0 User Manual

Arithmetic Operators

- : integer→ integer
: unsigned word[N]→ unsigned word[N]
: signed word[N]→ signed word[N]

+, -, /, * : integer * integer→ integer
: unsigned word[N] * unsigned word[N]→ unsigned word[N]
: signed word[N] * signed word[N]→ signed word[N]
: clock * integer→ real
: clock * real→ real

mod : integer * integer→ integer
: unsigned word[N] * unsigned word[N]→ unsigned word[N]
: signed word[N] * signed word[N]→ signed word[N]

For operations on words, the result is taken modulo 2N

>, <, >=, <= : integer * integer→ boolean
: clock * clock→ boolean
: clock * integer→ boolean
: clock * real→ boolean
: unsigned word[N] * unsigned word[N]→ boolean
: signed word[N] * signed word[N]→ boolean

Logic Operators

! (negation) : boolean→ boolean
: unsigned word[N]→ unsigned word[N]
: signed word[N]→ signed word[N]

&, |, ->, <->, xor, xnor : boolean * boolean→ boolean
: unsigned word[N] * unsigned word[N]→ unsigned word[N]
: signed word[N] * signed word[N]→ signed word[N]

=, != : boolean * boolean→ boolean
: integer * integer→ boolean
: clock * integer→ boolean
: clock * real→ boolean
: symbolic enum * symbolic enum→ boolean
: integers-and-symbolic enum *

integers-and-symbolic enum→ boolean
: unsigned word[N] * unsigned word[N]→ boolean
: signed word[N] * signed word[N]→ boolean

Index Subscript Operator

exp1[exp2] : array N..M of subtype * word[N]→ subtype
: array N..M of subtype * integer→ subtype

the value of exp2 has to be in range [N, M]

Copyright ©2019 by FBK. 168

nuXmv 2.0.0 User Manual

Bit-Wise Operators

:: (concatenation) : word[N] * word[M]→ unsigned word[N+M]
where word[•] can be any of unsigned word[•] or signed word[•]

exp1[exp2, exp3] : unsigned word[N] * integer * integer→ unsigned word[exp3 − exp2 + 1]
: signed word[N] * integer * integer→ unsigned word[exp3 − exp2 + 1]

exressions exp2 and exp3 must be integers such that 0 ≤ exp2 ≤ exp3 < N

<<, >> (shift) : unsigned word[N] * integer→ unsigned word[N]
: unsigned word[N] * unsigned word[•]→ unsigned word[N]
: signed word[N] * integer→ signed word[N]
: signed word[N] * unsigned word[•]→ signed word[N]

Set Operators

{exp1, exp2, . . . , expn} : equivalent to consecutive union operations
union : boolean set * boolean set→ boolean set

: integer set * integer set→ integer set
: symbolic set * symbolic set→ symbolic set
: integers-and-symbolic set * integers-and-symbolic set

→ integers-and-symbolic set
At first, if it is possible, the operands are converted to their set counterpart types,
then both operands are implicitly converted to a minimal common type

in : boolean set * boolean set→ boolean set
: integer set * integer set→ integer set
: symbolic set * symbolic set→ symbolic set
: integers-and-symbolic set * integers-and-symbolic set

→ integers-and-symbolic set
At first, if it is possible, the operands are converted to their set counterpart types,
then implicit convertion is performed on one of the operands

Case and If-Then-Else Expression

case cond1 : result1;

cond2 : result2;

. . .
condn : resultn;

esac

cond ? result1 : result2

condi must be of type boolean. If one of resulti is of a set type then all other resultk are
converted to their counterpart set types. The overall type of the expression is such a minimal
type that each resulti can be implicitly converted to.

Formula Operators

EX, AX, EF, AF, EG, AG,
X, Y, Z, G, H, F, O : boolean→ boolean

A-U, E-U, U, S : boolean * boolean→ boolean
A-BU, E-BU : boolean * integer * integer * boolean→ boolean
EBF, ABF, EBG, ABG : integer * integer * boolean→ boolean

Copyright ©2019 by FBK. 169

nuXmv 2.0.0 User Manual

Miscellaneous Operators

Integer..Integer : integer number * integer number→ integer
bool : unsigned word[1]→ boolean

: integer→ boolean
toint : boolean→ integer

: unsigned word[N] constant→ integer
: signed word[N] constant→ integer

word1 : boolean→ unsigned word[1]
signed : unsigned word[N]→ signed word[N]
unsigned : signed word[N]→ unsigned word[N]
extend : unsigned word[•] * integer→ unsigned word[N+integer]

: signed word[•] * integer→ signed word[N+integer]
next, init : any type→ the same type
() : any type→ the same type
:= : boolean * boolean→ no type

: integer * integer→ no type
: integer * integer set→ no type
: symbolic enum * symbolic enum→ no type
: symbolic enum * symbolic set→ no type
: integers-and-symbolic enum *

integers-and-symbolic enum→ no type
: integers-and-symbolic enum *

integers-and-symbolic set→ no type
: unsigned word[N] * unsigned word[N]→ no type
: signed word[N] * signed word[N]→ no type

Implicit type conversion is performed on the right operand only

This appendix contains

the syntactic production rules for writing a nuXmv program.

Identifiers

identifier ::
identifier_first_character

| identifier identifier_consecutive_character

identifier_first_character :: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z _

identifier_consecutive_character ::
identifier_first_character

| digit
| one of $ # -

digit :: one of 0 1 2 3 4 5 6 7 8 9

Note that there are certain reserved keyword which cannot be used as identifiers (see page 7).

Variable and DEFINE Identifiers

define_identifier :: complex_identifier

variable_identifier :: complex_identifier

Complex Identifiers

complex_identifier ::

Copyright ©2019 by FBK. 170

nuXmv 2.0.0 User Manual

identifier
| complex_identifier . identifier
| complex_identifier [simple_expression]
| self

Integer Numbers

integer_number ::
pos_integer_number

| - pos_integer_number

pos_integer_number ::
digit
| pos_integer_number digit

Real Numbers

real_number ::
float_number

| fractional_number
| exponential_number

float_number ::
pos_integer_number . pos_integer_number

fractional_number ::
fraction_prefix ’ pos_integer_number / pos_integer_number

fraction_prefix ::
one of f F

exponential_number ::
pos_integer_number exponential_prefix integer_number

| float_number exponential_prefix integer_number

exponential_prefix ::
one of e E

Constants

constant ::
boolean_constant

| integer_constant
| real_constant
| symbolic_constant
| word_constant
| range_constant

boolean_constant :: one of
FALSE TRUE

integer_constant :: integer_number

real_constant :: real_number

clock_constant :: time

Note that time is interpreted as a Clock constant only in timed nuXmv models.

Copyright ©2019 by FBK. 171

nuXmv 2.0.0 User Manual

symbolic_constant :: complex_identifier

word_constant :: 0 [word_sign_specifier] word_base [word_width] _ word_value

word_sign_specifier :: one of
u s

word_width :: integer_number (>0)

word_base :: b | B | o | O | d | D | h | H

word_value ::
hex_digit

| word_value hex_digit
| word_value

hex_digit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Note that there are some additional restrictions on the exact format of word constants (see page 13).

range_constant ::
integer_number .. integer_number

Basic Expressions

basic_expr ::
constant -- a constant

| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| function_call -- a call to a function
| (basic_expr)
| pi -- the pi constant
| abs (basic expr) -- absolute value
| max (basic expr , basic expr) -- max
| min (basic expr , basic expr) -- min
| sin (basic expr) -- sin
| cos (basic expr) -- cos
| exp (basic expr) -- exp
| tan (basic expr) -- tan
| ln (basic expr) -- ln
| pow (basic expr , simple expr) -- pow
| pi -- pi
| ! basic_expr -- logical/bitwise NOT
| basic_expr & basic_expr -- logical/bitwise AND
| basic_expr | basic_expr -- logical/bitwise OR
| basic_expr xor basic_expr -- logical/bitwise exclusive OR
| basic_expr xnor basic_expr -- logical/bitwise NOT xor
| basic_expr -> basic_expr -- logical/bitwise implication
| basic_expr <-> basic_expr -- logical/bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr != basic_expr -- inequality
| basic_expr < basic_expr -- less than
| basic_expr > basic_expr -- greater than
| basic_expr <= basic_expr -- less than or equal
| basic_expr >= basic_expr -- greater than or equal
| - basic_expr -- unary minus
| basic_expr + basic_expr -- integer addition
| basic_expr - basic_expr -- integer subtraction
| basic_expr * basic_expr -- integer multiplication
| basic_expr / basic_expr -- integer division
| basic_expr mod basic_expr -- integer remainder
| basic_expr >> basic_expr -- bit shift right
| basic_expr << basic_expr -- bit shift left
| basic_expr [index] -- index subscript

Copyright ©2019 by FBK. 172

nuXmv 2.0.0 User Manual

| basic_expr [integer_number : integer_number]
-- word bits selection

| basic_expr :: basic_expr -- word concatenation
| word1 (basic_expr)

-- boolean to word[1] convertion
| bool (basic_expr)

-- word[1] and integer to boolean convertion
| toint (basic_expr)

-- word[N] and boolean to integer convertion
| signed (basic_expr)

-- unsigned to signed word convertion
| unsigned (basic_expr)

-- signed to unsigned word convertion
| extend (basic_expr , basic_expr)

-- word width increase
| resize (basic_expr , basic_expr)

-- word width resizing
| basic_expr union basic_expr

-- union of set expressions
| { set_body_expr } -- set expression
| basic_expr in basic_expr -- inclusion expression
| basic_expr ? basic_expr : basic_expr

-- if-then-else expression
| count (basic_expr_list)

-- count of TRUE boolean expressions
| floor (basic_expr)
| case_expr -- case expression
| next (basic_expr) -- next expression

basic_expr_list ::
basic_expr

| basic_expr_list , basic_expr

set_body_expr ::
basic_expr

| set_body_expr , basic_expr

Case Expression and If-Then-Else Expression

case_expr :: case case_body esac

case_body ::
basic_expr : basic_expr ;

| case_body basic_expr : basic_expr ;

basic_expr ? basic_expr : basic_expr

Simple Expression

simple_expr :: basic_expr

Note that simple expressions cannot contain next operators.

Next Expression

next_expr :: basic_expr

Type Specifier

type_specifier ::
simple_type_specifier

| module_type_spicifier

simple_type_specifier ::

Copyright ©2019 by FBK. 173

nuXmv 2.0.0 User Manual

boolean
| word [integer_number]
| unsigned word [integer_number]
| signed word [integer_number]
| integer
| real
| clock
| { enumeration_type_body }
| integer_number .. integer_number
| array integer_number .. integer_number

of simple_type_specifier

enumeration_type_body ::
enumeration_type_value

| enumeration_type_body , enumeration_type_value

enumeration_type_value ::
symbolic_constant

| integer_number

Note that clock and Clock are interpreted as type specifiers only in timed nuXmv models.

Module Type Specifier

module_type_specifier ::
identifier [([parameter_list])]

parameter_list ::
simple_expr

| parameter_list , simple_expr

State, Input and Frozen Variables

var_declaration :: VAR var_list

ivar_declaration :: IVAR simple_var_list

frozenvar_declaration :: FROZENVAR simple_var_list

var_list :: complex_identifier : type_specifier ;
| var_list complex_identifier : type_specifier ;

simple_var_list :: complex_identifier : simple_type_specifier ;
| simple_var_list complex_identifier : simple_type_specifier ;

Functions

function declaration :: FUN function list

function list :: function declaration
| function list function declaration

function declaration :: complex identifier : function type specifier ;
function type specifier :: function args type specifier -> simple type specifier

function args type specifier :: simple type specifier
| function args type specifier * simple type specifier

Copyright ©2019 by FBK. 174

nuXmv 2.0.0 User Manual

DEFINE Declaration

define_declaration :: DEFINE define_body

define_body :: complex_identifier := next_expr ;
| define_body complex_identifier := next_expr ;

CONSTANTS Declaration

constants_declaration :: CONSTANTS constants_body ;

constants_body :: complex_identifier
| constants_body , complex_identifier

ASSIGN Declaration

assign_constraint :: ASSIGN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier := simple_expr

| init (complex_identifier) := simple_expr
| next (complex_identifier) := next_expr

TRANS Statement

trans_constraint :: TRANS next_expr [;]

INIT Statement

init_constrain :: INIT simple_expr [;]

INVAR Statement

invar_constraint :: INVAR simple_expr [;]

invar_constraint :: INVAR simple_expr -> simple_expr [;]

Clock variables are allowed to occur only in the second form above, and only in the rightmost simple expres-
sion, which is furthermore required to be convex (i.e. a conjunction of atoms).

FAIRNESS Constraints

fairness_constraint ::
FAIRNESS simple_expr [;]

| JUSTICE simple_expr [;]
| COMPASSION (simple_expr , simple_expr) [;]

Time domain annotation

time_domain_annotation :: @TIME DOMAIN time_domain
time_domain :: none | continuous

Note that the time domain annotation must precede every mudule declarations. If it is missing the model is
assumed to have time domain none.

Copyright ©2019 by FBK. 175

nuXmv 2.0.0 User Manual

Module Declarations

module :: MODULE identifier [(module_parameters)] [module_body]

module_parameters ::
identifier

| module_parameters , identifier

module_body ::
module_element

| module_body module_element

module_element ::
var_declaration

| ivar_declaration
| frozenvar_declaration%
| function_declaration
| define_declaration
| constants_declaration
| assign_constraint
| trans_constraint
| init_constraint
| invar_constraint
| fairness_constraint
| ctl_specification
| invar_specification
| ltl_specification
| compute_specification
| parameter_synth_problem

| isa_declaration
| pred_declaration
| mirror_declaration

PRED and MIRROR Declarations

pred_declaration :: PRED simple_expression [;]
| PRED < identifier > := simple_expression [;]

mirror_declaration :: MIRROR variable_identifier [;]

ISA Declaration

isa_declaration :: ISA identifier

Warning: this is a deprecated feature and will eventually be removed from NUSMV. Use module instances
instead.

CTL Specification

ctl_specification :: CTLSPEC ctl_expr ;
| SPEC ctl_expr [;]
| CTLSPEC NAME identifier := ctl_expr [;]
| SPEC NAME identifier := ctl_expr [;]

ctl_expr ::
simple_expr -- a simple boolean expression
| (ctl_expr)
| ! ctl_expr -- logical not
| ctl_expr & ctl_expr -- logical and

Copyright ©2019 by FBK. 176

nuXmv 2.0.0 User Manual

| ctl_expr | ctl_expr -- logical or
| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr xnor ctl_expr -- logical NOT exclusive or
| ctl_expr -> ctl_expr -- logical implies
| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally
| EX ctl_expr -- exists next state
| EF ctl_expr -- exists finally
| AG ctl_expr -- forall globally
| AX ctl_expr -- forall next state
| AF ctl_expr -- forall finally
| E [ctl_expr U ctl_expr] -- exists until
| A [ctl_expr U ctl_expr] -- forall until

INVAR Specification

invar_specification :: INVARSPEC next_expr ;
| INVARSPEC NAME identifier := next_expr [;]

This is equivalent to

SPEC AG next_expr ;

but is checked by a specialised algorithm during reachability analysis.

LTL Specification

ltl_specification :: LTLSPEC ltl_expr [;]
| LTLSPEC NAME identifier := ltl_expr [;]

ltl_expr ::
next_expr -- a boolean expression with possibly next operator
| (ltl_expr)
| ! ltl_expr -- logical not
| ltl_expr & ltl_expr -- logical and
| ltl_expr | ltl_expr -- logical or
| ltl_expr xor ltl_expr -- logical exclusive or
| ltl_expr xnor ltl_expr -- logical NOT exclusive or
| ltl_expr -> ltl_expr -- logical implies
| ltl_expr <-> ltl_expr -- logical equivalence
-- FUTURE
| X ltl_expr -- next state
| G ltl_expr -- globally
| F ltl_expr -- finally
| ltl_expr U ltl_expr -- until
| ltl_expr V ltl_expr -- releases
-- PAST
| Y ltl_expr -- previous state
| Z ltl_expr -- not previous state not
| H ltl_expr -- historically
| O ltl_expr -- once
| ltl_expr S ltl_expr -- since
| ltl_expr T ltl_expr -- triggered

Real Time CTL Specification

rtctl_specification :: CTLSPEC rtctl_expr [;]
| SPEC rtctl_expr [;]
| CTLSPEC NAME identifier := rtctl_expr [;]
| SPEC NAME identifier := rtctl_expr [;]

Copyright ©2019 by FBK. 177

nuXmv 2.0.0 User Manual

rtctl_expr ::
ctl_expr

| EBF range rtctl_expr
| ABF range rtctl_expr
| EBG range rtctl_expr
| ABG range rtctl_expr
| A [rtctl_expr BU range rtctl_expr]
| E [rtctl_expr BU range rtctl_expr]

range :: integer_number .. integer_number

It is also possible to compute quantative information for the FSM:

compute_specification :: COMPUTE compute_expr [;]
| COMPUTE NAME identifier := compute_expr [;]

compute_expr :: MIN [rtctl_expr , rtctl_expr]
| MAX [rtctl_expr , rtctl_expr]

PSL Specification

pslspec_declaration :: PSLSPEC psl_expr ;
| PSLSPEC NAME identifier := psl_expr ;

Notice that here the ; is mandatory.

psl_expr ::
psl_primary_expr

| psl_unary_expr
| psl_binary_expr
| psl_conditional_expr
| psl_case_expr
| psl_property

number :: integer_number
identifier::

variable_identifier
| define_identifier

psl_primary_expr ::
constant

| identifier ;; an identifier
| { psl_expr , ... , psl_expr }
| { psl_expr "{" psl_expr , ... , "psl_expr" }}
| (psl_expr)

psl_unary_expr ::
+ psl_primary_expr

| - psl_primary_expr
| ! psl_primary_expr

psl_binary_expr ::
psl_expr + psl_expr

| psl_expr union psl_expr
| psl_expr in psl_expr
| psl_expr - psl_expr
| psl_expr * psl_expr
| psl_expr / psl_expr
| psl_expr % psl_expr
| psl_expr == psl_expr
| psl_expr != psl_expr
| psl_expr < psl_expr
| psl_expr <= psl_expr
| psl_expr > psl_expr

Copyright ©2019 by FBK. 178

nuXmv 2.0.0 User Manual

| psl_expr >= psl_expr
| psl_expr & psl_expr
| psl_expr | psl_expr
| psl_expr xor psl_expr

psl_conditional_expr ::
psl_expr ? psl_expr : psl_expr

psl_case_expr ::
case

psl_expr : psl_expr ;
...
psl_expr : psl_expr ;

endcase

Among the subclasses of psl expr we depict the class psl bexpr that will be used in the following to identify
purely boolean, i.e. not temporal, expressions.

psl_property ::
replicator psl_expr ;; a replicated property

| FL_property abort psl_bexpr
| psl_expr <-> psl_expr
| psl_expr -> psl_expr
| FL_property
| OBE_property

replicator ::
forall var_id [index_range] in value_set :

index_range ::
[range]

range ::
low_bound : high_bound

low_bound ::
number

| identifier
high_bound ::

number
| identifier
| inf ;; inifite high bound

value_set ::
{ value_range , ... , value_range }

| boolean
value_range ::

psl_expr
| range

FL_property ::
;; PRIMITIVE LTL OPERATORS
X FL_property

| X! FL_property
| F FL_property
| G FL_property
| [FL_property U FL_property]
| [FL_property W FL_property]
;; SIMPLE TEMPORAL OPERATORS
| always FL_property
| never FL_property
| next FL_property
| next! FL_property
| eventually! FL_property
| FL_property until! FL_property
| FL_property until FL_property
| FL_property until!_ FL_property

Copyright ©2019 by FBK. 179

nuXmv 2.0.0 User Manual

| FL_property until_ FL_property
| FL_property before! FL_property
| FL_property before FL_property
| FL_property before!_ FL_property
| FL_property before_ FL_property
;; EXTENDED NEXT OPERATORS
| X [number] (FL_property)
| X! [number] (FL_property)
| next [number] (FL_property)
| next! [number] (FL_property)
;;
| next_a [range] (FL_property)
| next_a! [range] (FL_property)
| next_e [range] (FL_property)
| next_e! [range] (FL_property)
;;
| next_event! (psl_bexpr) (FL_property)
| next_event (psl_bexpr) (FL_property)
| next_event! (psl_bexpr) [number] (FL_property)
| next_event (psl_bexpr) [number] (FL_property)
;;
| next_event_a! (psl_bexpr) [psl_expr] (FL_property)
| next_event_a (psl_bexpr) [psl_expr] (FL_property)
| next_event_e! (psl_bexpr) [psl_expr] (FL_property)
| next_event_e (psl_bexpr) [psl_expr] (FL_property)
;; OPERATORS ON SEREs
| sequence (FL_property)
| sequence |-> sequence [!]
| sequence |=> sequence [!]
;;
| always sequence
| G sequence
| never sequence
| eventually! sequence
;;
| within! (sequence_or_psl_bexpr , psl_bexpr) sequence
| within (sequence_or_psl_bexpr , psl_bexpr) sequence
| within!_ (sequence_or_psl_bexpr , psl_bexpr) sequence
| within_ (sequence_or_psl_bexpr , psl_bexpr) sequence
;;
| whilenot! (psl_bexpr) sequence
| whilenot (psl_bexpr) sequence
| whilenot!_ (psl_bexpr) sequence
| whilenot_ (psl_bexpr) sequence

sequence_or_psl_bexpr ::
sequence

| psl_bexpr

sequence ::
{ SERE }

SERE ::
sequence

| psl_bexpr
;; COMPOSITION OPERATORS
| SERE ; SERE
| SERE : SERE
| SERE & SERE
| SERE && SERE
| SERE | SERE
;; RegExp QUALIFIERS

Copyright ©2019 by FBK. 180

nuXmv 2.0.0 User Manual

| SERE [* [count]]
| [* [count]]
| SERE [+]
| [+]
;;
| psl_bexpr [= count]
| psl_bexpr [-> count]

count ::
number

| range

OBE_property ::
AX OBE_property

| AG OBE_property
| AF OBE_property
| A [OBE_property U OBE_property]
| EX OBE_property
| EG OBE_property
| EF OBE_property
| E [OBE_property U OBE_property]

Copyright ©2019 by FBK. 181

Command Index

!, see bang 107

, 107
convert property to invar, 73
add abstraction preds, 133
add property, 72
alias, 107
bmc inc simulate, 89
bmc pick state, 86
bmc setup, 75
bmc simulate check feasible constraints,

89
bmc simulate, 88
build abstract model, 134
build boolean model, 63
build flat model, 62
build model, 60
build simplified property, 140
check compute, 71
check ctlspec, 67
check fsm, 65
check invar bmc inc, 85
check invar bmc itp, 120
check invar bmc, 84
check invar cegar predabs, 134
check invar guided, 118
check invar ic3, 121
check invar inc coi bdd, 122
check invar inc coi bmc, 123
check invar inc coi, 124
check invar local, 122
check invar, 68
check ltlspec bmc inc, 79
check ltlspec bmc onepb, 77
check ltlspec bmc, 76
check ltlspec compositional, 129
check ltlspec ic3, 125
check ltlspec inc coi bdd, 127
check ltlspec inc coi bmc, 127
check ltlspec inc coi, 128
check ltlspec on trace, 142
check ltlspec sbmc inc, 81
check ltlspec sbmc, 80
check ltlspec simplify, 126

check ltlspec, 70
check property, 71
check pslspec bmc inc, 91
check pslspec bmc, 90
check pslspec sbmc inc, 93
check pslspec sbmc, 92
check pslspec, 90
check traces properties, 143
clean sexp2bdd cache, 106
compute reachable guided, 131
compute reachable, 65
config abstraction, 133
dump fsm, 64
dynamic var ordering, 105
echo, 108
encode variables, 58
execute partial traces, 97, 154
execute traces, 96, 153
flatten hierarchy, 56
gen invar bmc, 84
gen ltlspec bmc onepb, 79
gen ltlspec bmc, 78
gen ltlspec sbmc, 82
get internal status, 62
go bmc, 75
go msat, 116
go time, 150
goto state, 98
go, 62
help, 108
history, 109
msat check invar bmc cegar implabs, 135
msat check invar bmc implabs, 135
msat check invar bmc, 119
msat check invar inc coi, 123
msat check ltlspec bmc, 124
msat check ltlspec inc coi, 128
msat check ltlspec sbmc inc, 125
msat pick state, 116
msat simulate, 117
pick state, 94
print bdd stats, 107
print current state, 98
print fair states, 66

182

nuXmv 2.0.0 User Manual

print fair transitions, 66
print formula, 106
print fsm stats, 66
print iwls95options, 61
print reachable states, 65
print usage, 109
process model, 62
quit abstraction, 134
quit, 109
read aiger model, 136
read model, 56
read trace, 100
reqan check assertion, 131
reqan check consistency, 130
reqan check possibility, 130
reset, 110
set bdd parameters, 107
set, 110
show dependencies, 58
show param synth problems, 148
show plugins, 99
show property, 72
show traces, 100
show vars, 57
simulate, 95
source, 111
synth params, 149
time setup, 150
timed check invar, 150
timed check ltlspec, 151
timed pick state, 152
timed simulate, 152
time, 112
unalias, 112
unset, 114
usage, 114
which, 114
write abstract model, 134
write aiger model, 137
write boolean model, 64
write coi model, 74
write countacc model, 141
write flat model, 63
write hier coi model, 141
write order, 59
write range reduced model, 140
write simplified model func, 139
write simplified model rel, 139
write untimed model, 151
write vmt model, 138
write xmi model, 142

Copyright ©2019 by FBK. 183

Variable Index

NUXMV LIBRARY PATH, 115, 157
abstraction.engine, 144
abstraction use expression as predicate name,

134
affinity, 61
ag only search, 67
autoexec, 114
backward compatibility, 57
bdd static order heuristics, 60
bmc dimacs filename, 83
bmc force pltl tableau, 83
bmc inc invar alg, 86
bmc invar alg, 86
bmc invar dimacs filename, 86
bmc length, 83
bmc loopback, 83
bmc optimized tableau, 83
bmc sbmc gf fg opt, 84
cegar.refinement, 144
check fsm, 66
check invar bdd bmc heuristic, 70
check invar bdd bmc threshold, 70
check invar forward backward heuristic,

70
check invar strategy, 70
cone of influence, 74
conj part threshold, 61
counter examples, 99
daggifier counter threshold, 63
daggifier depth threshold, 63
daggifier enabled, 63
daggifier statistics, 63
default simulation steps, 96
default trace plugin, 100
disable syntactic checks, 57
dynamic reorder, 103
enable sexp2bdd caching, 107
expand wordarrays, 148
filec, 115
forward search, 67
history char, 115
image W{1,2,3,4}, 61
image cluster size, 61
image verbosity, 61

input file, 56
input order file, 58
iwls95preorder, 61
keep single value vars, 57
ltl2smv single justice, 71
ltl tableau forward search, 67
msat dump format, 144
msat dump frac as float, 145
msat native word support, 145
nusmv stderr, 115
nusmv stdin, 115
nusmv stdout, 115
on failure script quits, 114
open path, 115
oreg justice emptiness bdd algorithm, 68
output boolean model file, 64
output flatten model file, 63
output order file, 59
output word format, 65
partition method, 60
pp list, 56
prop print method, 74
qe.engine, 145
qe.hybrid.backjumping enabled, 145
qe.hybrid.dagostino enabled, 145
qe.hybrid.partitioning enabled, 145
qe.hybrid.threshold enabled, 145
qe.hybrid.threshold value, 145
qe.msat.boolean simplifications enabled,

146
qe.msat.engine, 146
qe.msat.remove redundant constraints enabled,

146
qe.msat.top level propagation enabled,

146
qe.structural.analyze conjuncts enabled,

146
qe.structural.assert conjuncts enabled,

146
qe.structural.core engine, 146
qe.structural.dagostino enabled, 147
qe.structural.dnf enabled, 147
qe.structural.genbdds enabled, 147

184

nuXmv 2.0.0 User Manual

qe.structural.incrementality enabled,
147

qe.structural.inlining enabled, 147
qe.structural.inlining value, 147
qe.structural.low level enabled, 147
qe.structural.preassert conjuncts enabled,

147
qe.structural.varsampling enabled, 147
rbc inlining, 76
rbc rbc2cnf algorithm, 76
reorder method, 103
sat solver, 86
sexp inlining, 75
shell char, 115
show defines in traces, 99
shown states, 96
traces hiding prefix, 96, 99
traces regexp, 96, 99
traces show defines with next, 99
trans order file, 61
type checking warning on, 57
use coi size sorting, 74
vars order type, 59
verbose level, 53
write order dumps bits, 59
write xmi max word width, 148

Copyright ©2019 by FBK. 185

Index

Symbols
.nusmvrc, 157
-AG, 158
-bdd soh, 159
-bmc length k, 159
-bmc, 159
-coi, 158
-cpp, 157
-cp cp t, 159
-ctt, 158
-dcx, 157
-disable daggifier, 157
-disable sexp2bdd caching, 159
-disable syntactic checks, 157
-dynamic, 159
-ewa, 160
-flt, 158
-f, 158
-help, 157
-h, 157
-ic, 158
-ii, 158
-ils, 158
-is, 158
-iwls95preorder, 159
-iwls95 cp t, 159
-i iv file, 159
-keep single value vars, 157
-lp, 158
-mono, 159
-m method, 159
-noaffinity, 159
-n idx, 158
-obm bm file, 158
-ofm fm file, 158
-ojeba algorithm, 160
-old div op, 157
-old, 157
-o ov file, 159
-pre pps, 157
-reorder, 159
-rin on,off, 159
-r, 158
-sat solver name, 159

-sin on,off, 159
-source cmd-file, 52
-thresh cp t, 159
-time, 159
-t tv file, 159
-v verbose-level, 157
ASSIGN constraint, 31, 39
FAIRNESS constraints, 33
FROZENVAR declaration, 27
IVAR declaration, 26, 28
VAR declaration, 26, 28, 38
temp.ord, 59
+,-,*,/, 17
::, 19
<<, >>, 18
>,<,>=,<=, 17
[:], 19
[], 19
mod, 18
/̃.nusmvrc, 157

A
administration commands, 107
AND

logical and bitwise, 16
array define declarations, 29
array type, 9
Array Variables, 51

B
basic next expression, 23
Basic Trace Explainer, 101
batch, running NUXMV, 156
bit selection operator, 19
boolean type, 8
bool operator, 24

C
case expressions, 22
clock type, 9
Commands for Bounded Model Checking, 75
Commands for checking PSL specifications, 90
comments in

tool language, 7
compassion constraints, 33

186

nuXmv 2.0.0 User Manual

concatenation operator, 19
constant expressions, 11
CONSTANTS declarations, 29
constarray expressions, 21
context, 37
CTL specifications, 39

D
DD package interface, 103
declarations, 36
DEFINE : array, 29
DEFINE declarations, 29
defines, 15
definition of the FSM, 25
definition of the TTS, 38
Displaying Traces, 98

E
Empty Trace, 103
enumeration types, 8
Execution Commands, 96
expressions, 10

basic expressions, 13
basic next, 23
case, 22
constants, 11
constarray, 21
next, 23
read, 21
sets, 20
simple, 23
typeof, 22
write, 21

extend operator, 19

F
fair execution paths, 33
fairness constraints, 33
fair paths, 33
frozen variables syntax, 27
function calls, 15
Function Declaration, 30
functions, 15
FUN Declaration, 30

I
identifiers, 35
if-then-else expressions, 23
IFF

logical and bitwise, 16
implicit type conversion, 11
IMPLIES

logical and bitwise, 16
Important Difference Between BDD and SAT/SMT

Based LTL Model Checking, 44

inclusion operator, 21
index subscript operator, 19
infinity, 45
INIT constraint, 30
Input File Syntax, 50
input variables syntax, 26, 28
Inspecting Traces, 98
int array type, 10
integer type, 9
interactive command, AIG, 136
interactive command, vmt, 137
interface to DD Package, 103
INVAR constraint, 30, 39
Invariant Specifications, 40
INVARSPEC Specifications, 40
ISA declarations, 37

J
justice constraints, 33

K
keywords, 7

L
LTL Specifications, 41
LTL Specifications TTS, 43

M
main module, 36
master.nusmvrc, 157
model compiling, 56
model parsing, 56
model reading, 56
MODULE declarations, 33, 39
MODULE instantiations, 34

N
namespaces, 36
next expressions, 23
NOT

logical and bitwise, 16

O
operator

mod, 18
operators

AND, 16
arithmetic, 17
bit selection, 19
cast, 24
count, 23
equality, 16
floor, 24
IFF, 16
IMPLIES, 16
inclusion, 21

Copyright ©2019 by FBK. 187

nuXmv 2.0.0 User Manual

index subscript, 19
inequality, 16
NOT, 16
OR, 16
precedence, 15
relational, 17
shift, 18
union, 20
word concatenation, 19
XNOR, 16
XOR, 16

options, 156
OR

logical and bitwise, 16

P
Parameter Synthesis Specifications, 45
parentheses, 16
PRED declarations, 37
PSL Specifications, 46

R
read expressions, 21
Real Time CTL Specifications and Computations, 44
real type, 9
resize operator, 20

S
Scalar Variables, 50
self, 35
set expressions, 20
set types, 10
Shell configuration Variables, 114
Shift Operator, 18
signed operator, 25
signed word[N] operator, 25
simple expressions, 23
Simulation Commands, 94
States/Variables Table, 102
state variables, 26, 38
state variables syntax, 28
swconst operator, 24
syntax rules

complex identifiers, 35
identifiers, 7
main program, 36
module declarations, 33
symbolic constants, 8
type specifiers, 25

T
TIME DOMAIN annotation, 38
toint operator, 24
Trace Plugin Commands, 99
Trace Plugins, 101

Traces, 97
TRANS constraint, 31, 39
Type conversion operators, 24
Typeof expressions, 22
type order, 10
types, 8

array, 9
boolean, 8
clock, 9
enumerations, 8
implicit conversion, 11
int array, 10
integer, 9
ordering, 10
real, 9
set, 10
word, 8
word array, 9

type specifiers, 25, 38

U
uninterpreted function calls, 15
uninterpreted functions, 15
unsigned operator, 25
unsigned word[N] operator, 25
URGENT constraint, 39
uwconst operator, 24

V
variable declarations, 25, 38
variables, 15
VMT, 137, 138

W
word1 operator, 24
word array type, 9
word type, 8
write expressions, 21

X
XML Format Printer, 102
XML Format Reader, 103
XNOR

logical and bitwise, 16
XOR

logical and bitwise, 16

Copyright ©2019 by FBK. 188

	Introduction
	Analysis of finite-state domains
	Analysis of infinite-state domains
	Miscellaneous functionalities
	Differences with NuSMV

	Input Language of nuXmv
	Types Overview
	Boolean
	Enumeration Types
	Word
	Integer
	Real
	Clock
	Array
	WordArray
	IntArray
	Set Types
	Type Order

	Expressions
	Implicit Type Conversion
	Constant Expressions
	Basic Expressions
	Simple and Next Expressions
	Type conversion operators

	Definition of the FSM
	Variable Declarations
	DEFINE Declarations
	Array Define Declarations
	CONSTANTS Declarations
	Function Declaration
	INIT Constraint
	INVAR Constraint
	TRANS Constraint
	ASSIGN Constraint
	FAIRNESS Constraints
	MODULE Declarations
	MODULE Instantiations
	References to Module Components (Variables and Defines)
	A Program and the main Module
	Namespaces and Constraints on Declarations
	Context
	ISA Declarations
	PRED and MIRROR Declarations

	Definition of the Timed Transition System
	TIME_DOMAIN Annotation
	Variable Declarations
	INVAR Constraint
	URGENT Constraint
	TRANS Constraint
	ASSIGN Constraint
	MODULE Declarations

	Specifications
	CTL Specifications
	Invariant Specifications
	LTL Specifications
	Real Time CTL Specifications and Computations
	Parameter Synthesis Specifications
	PSL Specifications

	Variable Order Input
	Input File Syntax
	Scalar Variables
	Array Variables

	Clusters Ordering

	Running nuXmv interactively
	Commands from NuSMV
	Model Reading and Building
	Commands for Checking Specifications
	Commands for Bounded Model Checking
	Commands for checking PSL specifications
	Simulation Commands
	Execution Commands
	Traces
	Inspecting Traces
	Displaying Traces
	Trace Plugin Commands

	Trace Plugins
	Basic Trace Explainer
	States/Variables Table
	XML Format Printer
	XML Format Reader
	Empty Trace

	Interface to the DD Package
	Administration Commands
	Other Environment Variables

	Commands of nuXmv
	Commands for Initialization
	Commands for Model Simulation
	Commands for Invariant Checking
	Incremental Cone Of Influence for Invariant Checking

	Commands for LTL Model Checking
	Incremental Cone Of Influence for LTL Model Checking
	Compositional Reasoning for LTL Model Checking

	Commands for Requirements Analysis
	Commands for Computing Reachable States
	Commands for Reasoning via Abstraction
	Explicit Predicate Abstraction
	Implicit Predicate Abstraction

	Commands for Format Conversions
	Commands for aiger 1.9.4 format support
	Commands for VMT format support

	Commands for Model Transformation
	Commands for Model Simplification
	Commands for Model Exploration

	Other Commands
	nuXmv environment variables
	Commands for Parameter Synthesis

	Commands of timed nuXmv
	Commands for Initialization
	Commands for Invariant Checking
	Commands for LTL Model Checking
	Command for dumping discrete model
	Timed Simulation Commands
	Timed Execution Commands
	Time aware traces
	Basic Trace Explainer
	States/Variables Table
	XML Format Printer
	XML Format Reader

	Running nuXmv batch
	Bibliography
	Typing and Production Rules
	Typing Rules
	Types
	Implicit Conversion
	Type Rules

	Command Index
	Variable Index
	Index

